Active Singularity Approach to Control of Nonsmooth Mechanical and Electromechanical Systems Using Wavelet-based and Impulsive Contol Methods

使用基于小波和脉冲控制方法控制非光滑机械和机电系统的主动奇点方法

基本信息

项目摘要

Active Singularity Approach to Control of Nonsmooth Mechanical & Electromechanical Systems Using Wavelet-Based & Impulsive Control MethodsAbstractThe common feature in the behavior of systems with impacts and impulsive control actions is the presence of singularities which manifest themselves in discontinuities and nonsmoothness in system motion, jumps in system dimension, lack of continuous dependence on the initial conditions and other irregularities. This proposal focuses on the introduction of a control action into the system during the singularity phase rather than the traditional approach of control during the nonsingular phase of the system motion.The goal of the research are to a) develop a mathematical framework for representing control actions, system motions, and system dynamics during the singularity phase of system motion and combining them with the regular motion phase, b) develop the ultra-high-speed time-localized state estimation and system identification procedures, which utilize signals containing both smooth and impulsive measurement data, c) develop procedures for the design of open-loop and feedback control laws to satisfy specific control objectives with control actions applied during the singularity phase as well as during the regular system motion, and d) apply the procedures developed to the high speed fault clearing in the boiler-turbine units with fast valving, modeling and control of impact-based motions in MEMS, and control of the robotic systems for cutting and welding with impulsive endpoint return motion.
基于小波和脉冲控制方法的非光滑机电系统的主动奇点控制摘要在冲击和脉冲控制作用下,系统行为的共同特征是存在奇点,这些奇点表现为系统运动的不连续性和非光滑性,系统维度的跳跃,对初始条件的不连续依赖和其他不规则。该方案的重点是在系统运动的奇点阶段引入控制动作,而不是在系统运动的非奇异阶段引入传统的控制方法。研究的目的是a)建立一个数学框架来表示系统运动奇点阶段的控制动作、系统运动和系统动力学,并将它们与规则运动阶段相结合,b)开发超高速的时间局部化状态估计和系统辨识程序,其利用包含平滑和脉冲测量数据的信号,C)开发满足特定控制目标的开环和反馈控制律的设计程序,包括在奇点阶段和常规系统运动中应用的控制动作;d)将所开发的程序应用于快速阀门锅炉汽轮机组的高速故障排除、MEMS中基于冲击的运动的建模和控制以及具有脉冲终点返回运动的机器人系统的控制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Bentsman其他文献

Coal-fired utility boiler modelling for advanced economical low-NOx combustion controller design
用于先进经济型低氮氧化物燃烧控制器设计的燃煤电站锅炉建模
  • DOI:
    10.1016/j.conengprac.2016.10.005
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Huirong Zhao;Jiong Shen;Yiguo Li;Joseph Bentsman
  • 通讯作者:
    Joseph Bentsman
Mixed H 2 / H ∞ Predictive Control
混合 H 2 / H ∞ 预测控制
  • DOI:
    10.1016/s1474-6670(17)49159-2
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Tse;Joseph Bentsman;N. Miller
  • 通讯作者:
    N. Miller
Single Diophantine Equation Polynomial Discrete-Time <em>H</em><sub>2</sub> and <em>H</em><sub>∞</sub> Controller Computation
  • DOI:
    10.1016/s1474-6670(17)35713-0
  • 发表时间:
    2003-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Haipeng Zhao;Joseph Bentsman
  • 通讯作者:
    Joseph Bentsman
The Singularity Opening Approach to Control of Mechanical Systems with Constraints
  • DOI:
    10.1016/s1474-6670(17)38902-4
  • 发表时间:
    2003-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Boris M. Miller;Joseph Bentsman
  • 通讯作者:
    Joseph Bentsman
Preference adjustable multi-objective NMPC: An unreachable prioritized point tracking method
偏好可调多目标NMPC:一种不可达优先点跟踪方法
  • DOI:
    10.1016/j.isatra.2016.09.020
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Huirong Zhao;Jiong Shen;Yiguo Li;Joseph Bentsman
  • 通讯作者:
    Joseph Bentsman

Joseph Bentsman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Bentsman', 18)}}的其他基金

GOALI: Operational Reconfigurability of Constrained Moving-Boundary Processes through Agile Motion Planning with Application to Steel Continuous Casting
GOALI:通过敏捷运动规划实现约束移动边界过程的操作可重构性并应用于钢连铸
  • 批准号:
    1300907
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
GOALI: Hybrid Control of Continuous Casting for Whale and Crack Prevention
GOALI:连铸的混合控制以防止鲸鱼和裂纹
  • 批准号:
    0900138
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Energy-Efficient, Multi-Scale, Biologically-Inspired Mobile Sensor Networks with Real-Time Observation Adaptability
具有实时观测适应性的节能、多尺度、受生物启发的移动传感器网络
  • 批准号:
    0501407
  • 财政年份:
    2005
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Active Sensing Approach to Output-Based Control of Nonsmooth Dynamical Systems with Controlled Singularities
具有受控奇点的非光滑动力系统的基于输出的控制的主动传感方法
  • 批准号:
    0324630
  • 财政年份:
    2003
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Control of Uncertain Time-Varying Systems Based on Robust Predictive Control Technique and Localized Time-Frequency Concepts
基于鲁棒预测控制技术和局部时频概念的不确定时变系统控制
  • 批准号:
    9612079
  • 财政年份:
    1996
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Control of Mechanical Systems with Agility/Precision Response Objective under Energy and Magnitude Constraints
能量和幅度约束下具有敏捷/精确响应目标的机械系统控制
  • 批准号:
    9414472
  • 财政年份:
    1994
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Presidential Young Investigators Award
总统青年研究员奖
  • 批准号:
    8957198
  • 财政年份:
    1989
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似海外基金

Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
  • 批准号:
    23H05437
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
  • 批准号:
    23K03106
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
  • 批准号:
    2304692
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Construction of an automatic search tool with verification for mathematical models with singularity
具有奇异性的数学模型验证自动搜索工具的构建
  • 批准号:
    23K19016
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
  • 批准号:
    EP/W036320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了