Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
基本信息
- 批准号:2306726
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project concerns the mathematical analysis of fluid mechanics and mathematical biology. Fluids are all around us, and better understanding of fluid motion is of importance in science and engineering. The project aims to advance understanding of small-scale formation in fluid motion, a process that appears in a wide range of applications and is related to development of turbulence. The project will also focus on analysis of chemotaxis, directed motion of cells or other biological agents in response to external chemical stimuli. Here the main goal is to understand and quantify how chemotaxis helps facilitate many biological processes from reproduction to immune system function. Many chemotactic processes take place in fluid, and interaction between the fundamental effects of diffusion, fluid flow and chemotaxis will also be studied. These problems are at the forefront of modern applied analysis and will require development of novel techniques that should be applicable in other settings. The project will also involve the training of junior researchers at a postdoctoral and graduate level.The first direction of the project is concerned with small scale formation and loss of regularity in patch solutions to the surface quasi-geostrophic (SQG) equation. The SQG equation appears in atmospheric science, where it is used to model large scale weather phenomena like temperature fronts. The PI and collaborators have recently discovered an intriguing structure in the evolution equation for curvature of the patch boundary, and plan to use this insight to obtain new results on ill-posedness and possible singularity formation in the bulk of the fluid. The second direction addresses small scale creation in solutions to the 2D Boussinesq system and 3D Euler equation. This direction also seeks to develop models suitable to gain insight into possible singularity formation in solutions of the 3D Euler and Navier-Stokes equations in the bulk, suggested by recent numerical simulations of Tom Hou. The third direction focuses on the coupled Keller-Segel-fluid system and explores the potential singularity suppression by fluid advection. The project aims to establish first rigorous results of this sort in the situation where advection is not passive and is not in a perturbative regime. The final direction is concerned with the development of a new class of models addressing the effect of chemotaxis on biological reactions. The research is intended to go beyond regularity estimates and rigorously derive scaling laws that may be of interest in applications. A variety of techniques that will be deployed include novel comparison principles, methods of Fourier and functional analysis, asymptotic analysis techniques, as well as PDE regularity estimates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及流体力学和数学生物学的数学分析。流体在我们周围无处不在,更好地了解流体运动在科学和工程中具有重要意义。该项目旨在促进对流体运动中的小尺度形成的理解,这一过程出现在广泛的应用中,并与湍流的发展有关。该项目还将重点分析化学趋化性,即细胞或其他生物制剂对外部化学刺激的定向运动。这里的主要目标是了解和量化趋化性如何帮助促进从生殖到免疫系统功能的许多生物过程。许多趋化过程发生在液体中,扩散、液体流动和趋化作用的基本效应之间的相互作用也将被研究。这些问题处于现代应用分析的前沿,需要开发新的技术,这些技术应该适用于其他环境。该项目还将涉及对博士后和研究生级别的初级研究人员的培训。该项目的第一个方向是关于地面准地转(SQG)方程的小尺度形成和斑块解的规则性丧失。SQG方程出现在大气科学中,它被用来模拟大范围的天气现象,如温度锋面。PI及其合作者最近在补丁边界曲率的演化方程中发现了一种有趣的结构,并计划利用这一洞见来获得关于流体主体中的病态和可能的奇点形成的新结果。第二个方向是在2D Boussinesq系统和3D Euler方程的解中进行小规模的创建。这一方向还寻求开发适合于洞察3D Euler方程和Navier-Stokes方程整体解中可能的奇点形成的模型,这是由Tom Hou最近的数值模拟所建议的。第三个方向聚焦于耦合的Keller-Segel-流体系统,探讨流体平流对势奇性的抑制作用。该项目的目的是首先在平流不是被动的和不处于扰动状态的情况下建立这类严格的结果。最后的方向是开发一类新的模型,解决趋化作用对生物反应的影响。这项研究的目的是超越正则性估计,严格推导出可能在应用中感兴趣的比例定律。将部署的各种技术包括新颖的比较原理、傅立叶和泛函分析方法、渐近分析技术以及偏微分方程正则性估计。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kiselev其他文献
Small scale creation in active scalars
活动标量中的小规模创建
- DOI:
10.1007/978-3-030-54899 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Alexander Kiselev - 通讯作者:
Alexander Kiselev
From prey to predator: an in-situ observation of microplastic trophic transfer from emMytilus edulis/em to emAsterias rubens/em
从猎物到捕食者:紫贻贝(Mytilus edulis)到红海星(Asterias rubens)微塑料营养转移的原位观察
- DOI:
10.1016/j.marpolbul.2025.118211 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:4.900
- 作者:
Alexander Kiselev;Anna Gebruk;Svetlana Pakhomova;Alexandra Drebezova;Alexander Tzetlin - 通讯作者:
Alexander Tzetlin
Some Examples in One-Dimensional “Geometric” Scattering on Manifolds
流形上一维“几何”散射的一些例子
- DOI:
10.1006/jmaa.1997.5497 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Alexander Kiselev - 通讯作者:
Alexander Kiselev
Transfer matrices and transport for Schrödinger operators
薛定谔算子的传递矩阵和传输
- DOI:
10.5802/aif.2034 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
F. Germinet;Alexander Kiselev;Serguei Tcheremchantsev - 通讯作者:
Serguei Tcheremchantsev
Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators
- DOI:
10.1007/s002200050346 - 发表时间:
1998-05-01 - 期刊:
- 影响因子:2.600
- 作者:
Alexander Kiselev;Yoram Last;Barry Simon - 通讯作者:
Barry Simon
Alexander Kiselev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kiselev', 18)}}的其他基金
RTG: Training Tomorrow's Workforce in Analysis and Applications
RTG:培训未来的分析和应用劳动力
- 批准号:
2038056 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2006372 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
- 批准号:
1848790 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
- 批准号:
1712294 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1535653 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
- 批准号:
1453199 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159133 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
- 批准号:
1104415 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Topics in Reaction-Diffusion and Fluid Mechanics
反应扩散和流体力学主题
- 批准号:
0653813 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2006372 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Singularity and Small-Scale Formation for Model Equations of Fluid Dynamics
流体动力学模型方程的奇异性和小尺度形成
- 批准号:
1810687 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Fine-Scale Singularity Detection in Multi-Dimensional Imaging with Regular, Orientable, Symmetric, Frame Atoms with Small Support
具有规则、可定向、对称、小支撑的框架原子的多维成像中的精细奇异性检测
- 批准号:
1720487 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
- 批准号:
RGPIN-2017-04157 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Singularity and Small-Scale Formation for Model Equations of Fluid Dynamics
流体动力学模型方程的奇异性和小尺度形成
- 批准号:
1614797 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant