Application of Stochastic Theories and Three-Dimensional Particle Tracking Velocity (3D-PTV) Experiments to Study Anomalous Dispersion
应用随机理论和三维粒子跟踪速度(3D-PTV)实验研究反常色散
基本信息
- 批准号:0003878
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-01-15 至 2004-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0003878CushmanModel developed to simulate in porous media often consider the dispersive flux of the contaminant species to be proportional to the concentration gradient via a constant, or time-dependent dispersion coefficient. These models are a crude approximation for transport in porous media with evolving scales of heterogeneity on the scale of observation. It is said that a porous medium behaves in a fickian fashion if the dispersion tensor is constant, it is quasi-fickian if the tensor is time dependent, and it is convolution fickian if the flux is a convolution. More general forms of the dispersive flux are possible, and in any case, dispersive fluxes are called anomalous if there is no constant coefficient of proportionality between the dispersive flux and the gradient of concentration.A main purpose of the proposed effect is to use existing models of the mixing process in conjunction with three-dimensional particle tracking velocity (3D-PTV) to study the accuracy of these theories for various types of heterogeneity. In addition, it is proposed to extend these models by using the full intermediate scattering function and concepts from nonlinear dynamics such as finite-size Lyapunov exponents. The specific experimental objectives are: (i) to construct a sequence of matched index, heterogeneous, porous-matrix fluid mixtures; (ii) to use 3D-PTV to reconstruct lagrangian particle trajectories; (iii) to use the trajectories to determine mean square displacements, velocity distributions velocity correlation (single and multiparticle) functions, classical dispersion tensors, self-part and full intermediate scattering functions, generalized wave-vector and frequency dependent dispersion tensors, and finite-size Lyapunov exponents; (iv) to investigate buoyancy driven flow of air in glycerol in matched index formations, both homogeneous and heterogeneous on the lab scale. The specific theoretical objectives are: (i) to examine the adequacy of existing models of transport in heterogeneous media using experimental data: (ii) to develop the relationship between the finite-size Lyapunov exponents and dispersion in heterogeneous media; (iii) to develop a theory of dispersion in porous media with evolving heterogeneity which relies upon multiparticle correlation functions, the full intermediate scattering function, and the finite-size Lyapunov exponents; and (iv) to test the new theory with data obtained experimentally.
为模拟多孔介质而发展的Cushman模型通常认为污染物的弥散通量与浓度梯度成正比,其扩散系数为常数或随时间变化。这些模型是对多孔介质中传输的粗略近似,在观测尺度上具有不断演变的非均质性。据说,如果色散张量是常数,多孔介质的行为是菲克的,如果张量是时间相关的,它是准菲克的,如果通量是卷积的,它是卷积菲克的。更一般形式的弥散通量是可能的,在任何情况下,如果弥散通量和浓度梯度之间没有恒定的比例系数,则称弥散通量为反常。所提出的效应的一个主要目的是利用现有的混合过程模型和三维粒子跟踪速度(3D-PTV)来研究这些理论对于各种类型的非均质性的精度。此外,利用全中间散射函数和有限大小李雅普诺夫指数等非线性动力学概念对这些模型进行了推广。具体的实验目标是:(I)构建匹配的折射率、非均匀、多孔基质的流体混合物的序列;(Ii)使用3D-PTV重建拉格朗日粒子轨迹;(Iii)使用轨迹来确定均方位移、速度分布、速度关联(单粒子和多粒子)函数、经典弥散张量、自部分和完全中间散射函数、广义波矢量和频率相关的弥散张量以及有限大小的Lyapunov指数;(Iv)在实验室尺度上研究甘油中的浮力驱动的空气流动。具体的理论目标是:(I)利用实验数据检验现有非均匀介质输运模型的充分性;(Ii)发展有限尺寸Lyapunov指数与非均匀介质中色散之间的关系;(Iii)发展依赖于多粒子关联函数、完全中间散射函数和有限尺寸Lyapunov指数的多孔性介质中的色散理论;以及(Iv)用实验数据检验新理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Cushman其他文献
DMS法によるアイスプラントCAM関連遺伝子の発現制御領域の同定
DMS法鉴定冰植物CAM相关基因的表达控制区
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
近藤侑梨;佐藤稜真;竹内敬香;John Cushman;齋藤和幸;東江 栄 - 通讯作者:
東江 栄
MIT Open Access Articles The Microbial Opsin Family of Optogenetic Tools
麻省理工学院开放获取文章光遗传学工具的微生物视蛋白家族
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Feng Zhang;J. Vierock;O. Yizhar;L. Fenno;Satoshi Tsunoda;A. Kianianmomeni;Matthias Prigge;Andre Berndt;John Cushman;Ju¨rgen Polle;Jon Magnuson;Peter Hegemann;Karl Deisseroth - 通讯作者:
Karl Deisseroth
トランスクリプトーム解析によるアイスプラントのCAM型光合成駆動を制御する遺伝子群の探索
通过转录组分析寻找控制冰植物CAM型光合作用驱动的基因
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
佐藤稜真;竹内敬香;近藤侑梨;John Cushman;齋藤和幸;東江 栄 - 通讯作者:
東江 栄
John Cushman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Cushman', 18)}}的其他基金
Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
- 批准号:
2243692 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
PlantSynBio: Optimized CAM Engineering for Improving Water-use Efficiency in Plants
PlantSynBio:优化 CAM 工程,提高植物用水效率
- 批准号:
2042253 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Data-Driven Multiscale Model Identification and Scaling via Random Renormalization Group Operators for Subsurface Transport
通过随机重整化群算子进行数据驱动的多尺度模型识别和缩放用于地下传输
- 批准号:
1314828 - 财政年份:2013
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Regulatory and Signaling Mechanisms of Crassulacean Acid Metabolism: A Photosynthetic Adaptation to Environmental Stress
景天酸代谢的调节和信号机制:对环境胁迫的光合适应
- 批准号:
0843730 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
The Hydrology of Desiccation and Cracking with Application to Desertification
干裂水文及其在荒漠化中的应用
- 批准号:
0838224 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
2008 Gordon Research Conference on SALT & WATER STRESS IN PLANTS, September 7-12, 2008 Big Sky, MT
2008年戈登SALT研究会议
- 批准号:
0817753 - 财政年份:2008
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG——了解地下水文学中遗传信息的传递
- 批准号:
0620460 - 财政年份:2006
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Mechanisms of the Evolutionary Origins of Crassulacean Acid Metabolism (CAM) in Tropical Orchids
热带兰花景天酸代谢(CAM)的进化起源机制
- 批准号:
0543659 - 财政年份:2006
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Collaborative Research: CMG: Toward Understanding the Transfer of Genetic Information in Subsurface Hydrology
合作研究:CMG:了解地下水文学中遗传信息的传递
- 批准号:
0417555 - 财政年份:2004
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
CMG Training: Summer School in Geophysical Porous Media: Multidisciplinary Science from Nanoscale (Clay) to Global (Magma) Migration
CMG 培训:地球物理多孔介质暑期学校:从纳米尺度(粘土)到全球(岩浆)迁移的多学科科学
- 批准号:
0417805 - 财政年份:2004
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Stochastic Partial Differential Equations, Gauge Theories, and Scaling Limits
随机偏微分方程、规范理论和标度极限
- 批准号:
1954091 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
General theories on nonlinear stochastic partial differential equations with renormalizations
具有重整化的非线性随机偏微分方程的一般理论
- 批准号:
19K14556 - 财政年份:2019
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
- 批准号:
1909525 - 财政年份:2018
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Solution Theories and Scaling Limit Problems in Stochastic Partial Differential Equations
随机偏微分方程中的解理论和标度极限问题
- 批准号:
1712684 - 财政年份:2017
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Combination of stochastic differential equations and other theories
随机微分方程与其他理论的结合
- 批准号:
17K14204 - 财政年份:2017
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Conference on Quantum Integrable Systems, Conformal Field Theories and Stochastic Processes
量子可积系统、共形场论和随机过程会议
- 批准号:
1637087 - 财政年份:2016
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Non-local theories and stochastic mechanics: Two convergent directions for structural modelling?
非局部理论和随机力学:结构建模的两个收敛方向?
- 批准号:
EP/M004163/1 - 财政年份:2014
- 资助金额:
$ 28万 - 项目类别:
Research Grant
Workshop:Facets of Integrability: Random Patterns, Stochastic Processes, Hydrodynamics, Gauge Theories and Condensed Matter Systems-the Simons Ctr for Geometry&Physics 1/21-27/
研讨会:可积性的各个方面:随机模式、随机过程、流体动力学、规范理论和凝聚态系统-西蒙斯几何中心
- 批准号:
1310360 - 财政年份:2013
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
QCD and other models at finite density, Stochastic Quantisation, Non-equilibriumphenomena in Quantum Field Theories.
有限密度下的 QCD 和其他模型、随机量化、量子场论中的非平衡现象。
- 批准号:
203063162 - 财政年份:2011
- 资助金额:
$ 28万 - 项目类别:
Research Grants