EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation

EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器

基本信息

  • 批准号:
    2223495
  • 负责人:
  • 金额:
    $ 197.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Neurological disorders, such as traumatic brain injury, stroke, or cerebral palsy, are an important cause of disability and death worldwide. Nearly one in six of the world’s population experience these disorders. However, the very limited treatments available for these disorders provide only modest therapeutic benefits and are often associated with serious side effects. Brain-inspired, implanted computing devices could provide a solution for rehabilitating and curing these disorders. Such devices can operate by recording electrical signals from the nervous system, processing them, and stimulating another part of the brain in real-time. This allows the injured or impaired area of the brain to be bypassed or rehabilitated. However, existing brain-inspired computing devices consume too much power and are not fast enough to provide such real-time feedback and control. This project aims to create a “brain co-processor” by innovating in two aspects: first, create new algorithms based on neural signals collected from the brain to provide higher accuracy; and second, by employing optical hardware that not only can process information with high speed and low power, but also directly interfaces with the brain by exploiting light-controlled proteins in the brain. Furthermore, this project aims to improve the training and education of undergraduate and high school students, with a strong emphasis on including women and underrepresented minority communities, in multi-disciplinary research on optics, machine learning, and neuroscience. The scientific results will be disseminated to a wide scientific audience via seminars, workshops, peer-reviewed publications, and conferences.Understanding how the brain works and using that knowledge to restore or augment brain function require ultrafast parallel algorithms that are orders-of-magnitude more advanced than current state-of-the-art. This research project will build “optical neural co-processors” that use light as a computational resource and leverage brain-inspired encoder-decoder recurrent neural networks to interact with the brain in multiple natural timescales of the brain. Combining expertise in theoretical neuroscience, neuro-inspired machine learning, optogenetics, neuro-rehabilitation, nanophotonics and integrated semiconductor optics, this research project will develop brain-inspired predictive coding artificial neural networks for neural interfacing and co-processing; design and fabricate optical neural architectures that exploit emerging semiconductor nanophotonics and integrated photonics; as well as demonstrate optical neural co-processors that interface with the brain in real-time for rehabilitation in non-human primates. Along with technical advancements, neuro-ethical implications of the developed technologies will be investigated in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经系统疾病,如创伤性脑损伤、中风或脑瘫,是世界范围内残疾和死亡的重要原因。世界人口中近六分之一的人患有这些疾病。然而,可用于这些疾病的非常有限的治疗仅提供适度的治疗益处,并且通常与严重的副作用相关。受大脑启发的植入式计算设备可以为康复和治疗这些疾病提供解决方案。这种设备可以通过记录来自神经系统的电信号,处理它们并实时刺激大脑的另一部分来运行。这使得受伤或受损的大脑区域被绕过或康复。然而,现有的大脑启发式计算设备消耗太多的功率并且不够快以提供这种实时反馈和控制。该项目旨在通过两个方面的创新来创建“大脑协处理器”:首先,基于从大脑收集的神经信号创建新的算法,以提供更高的准确性;其次,通过使用光学硬件,不仅可以高速低功耗地处理信息,还可以通过利用大脑中的光控蛋白质直接与大脑接口。此外,该项目旨在改善本科生和高中生的培训和教育,特别强调将妇女和代表性不足的少数民族社区纳入光学,机器学习和神经科学的多学科研究。科学成果将通过研讨会、讲习班、同行评审的出版物,了解大脑如何工作,并利用这些知识来恢复或增强大脑功能,需要超快的并行算法,这些算法比当前最先进的算法先进几个数量级。该研究项目将建立“光学神经协处理器”。它使用光作为计算资源,并利用大脑启发的编码器-解码器循环神经网络,以大脑的多个自然时间尺度与大脑交互。结合理论神经科学,神经启发机器学习,光遗传学,神经康复,纳米光子学和集成半导体光学的专业知识,该研究项目将开发用于神经接口和协同处理的脑启发预测编码人工神经网络;设计和制造利用新兴半导体纳米光子学和集成光子学的光学神经架构;以及展示光学神经协处理器,它与非人类灵长类动物的大脑实时连接,用于康复。沿着技术的进步,神经伦理学的影响将在这个项目中进行调查。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photonic advantage of optical encoders
光学编码器的光子优势
  • DOI:
    10.1515/nanoph-2023-0579
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Huang, Luocheng;Tanguy, Quentin A.;Fröch, Johannes E.;Mukherjee, Saswata;Böhringer, Karl F.;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Neural co-processors for restoring brain function: results from a cortical model of grasping
用于恢复大脑功能的神经协处理器:抓取皮质模型的结果
  • DOI:
    10.1088/1741-2552/accaa9
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Bryan, Matthew J.;Preston Jiang, Linxing;P N Rao, Rajesh
  • 通讯作者:
    P N Rao, Rajesh
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Full color visible imaging with crystalline silicon meta-optics
基于晶体硅超构表面的全彩可见光成像
  • DOI:
    10.1038/s41377-025-01888-w
  • 发表时间:
    2025-06-18
  • 期刊:
  • 影响因子:
    23.400
  • 作者:
    Johannes E. Fröch;Luocheng Huang;Zhihao Zhou;Virat Tara;Zhuoran Fang;Shane Colburn;Alan Zhan;Minho Choi;Arnab Manna;Andrew Tang;Zheyi Han;Karl F. Böhringer;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Strain-tunable emission from single photon emitters in a Hexagonal Boron Nitride Metasurface
六方氮化硼超表面中单光子发射器的应变可调发射
Low-loss multilevel operation using lossy phase-change material-integrated silicon photonics
使用有损相变材料集成硅光子学进行低损耗多级操作
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rui Chen;Virat Tara;Jayita Dutta;Zhuoran Fang;Jiajiu Zheng;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
  • 批准号:
    1936100
  • 财政年份:
    2019
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
  • 批准号:
    1836500
  • 财政年份:
    2018
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
  • 批准号:
    1708579
  • 财政年份:
    2017
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant

相似海外基金

Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
  • 批准号:
    498289
  • 财政年份:
    2024
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Operating Grants
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
  • 批准号:
    2318065
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
Combinatorics and Braid Varieties
组合学和编织品种
  • 批准号:
    2246877
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
EFRI BRAID: Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding
EFRI BRAID:通过时间支架有效学习人类和机器的时空规律
  • 批准号:
    2317706
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
EFRI BRAID: Fractional-order neuronal dynamics for next generation memcapacitive computing networks
EFRI BRAID:下一代记忆电容计算网络的分数阶神经元动力学
  • 批准号:
    2318139
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
EFRI BRAID: Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction
EFRI BRAID:模拟小脑时间相干信号以实现超高效紧急预测
  • 批准号:
    2317974
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs
EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航
  • 批准号:
    2318081
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
EFRI BRAID: Neuroscience Inspired Visual Analytics
EFRI BRAID:神经科学启发的视觉分析
  • 批准号:
    2318101
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
EFRI BRAID: Scalable-Learning Neuromorphics
EFRI BRAID:可扩展学习神经形态
  • 批准号:
    2318152
  • 财政年份:
    2023
  • 资助金额:
    $ 197.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了