Adaptive optical microscopy for high-accuracy recording of neural activity in vivo

用于高精度记录体内神经活动的自适应光学显微镜

基本信息

  • 批准号:
    10324548
  • 负责人:
  • 金额:
    $ 57.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY To understand the computations in the brain, we need to monitor the activity of neural circuits at high accuracy, which requires methodologies with high spatial and temporal resolution. Non-invasive and capable of resolving subcellular structures, optical microscopy has been extensively applied in the field of neuroscience, with a variety of methods developed to image neural activity at high speed, large depths, and/or over large spatial scales. For example, free-space angular-chirp-enhanced delay two-photon fluorescence microscopy was developed to record membrane voltage at kHz frame rate in the brain in vivo. Three-photon fluorescence microscopy, an emerging method that uses excitation light of longer wavelengths than two-photon fluorescence microscopy, has large penetration depths and is capable of imaging structures over 1-mm deep in the mouse brain. An alternative to the point-scanning multiphoton fluorescence microscopy above, single-photon widefield fluorescence microscopy has also been applied to in vivo monitoring of brain activity. Most commonly, the entire sample is illuminated and the emitted fluorescence collected by an objective lens and imaged with a camera, which enables fast activity imaging of superficial structures, sometimes over millimeters in lateral dimension. To obtain accurate measurements of neural activity in vivo, however, one has to combat the degradation of the resolving power of these microscopy methods when they are applied to brain tissue. The optical inhomogeneity of the biological tissue itself distorts the image-forming light and prevents all microscopy modalities from achieving their designed performance in vivo. When applied to activity imaging, such degradation can lead to erroneous conclusions. Here, we propose to optimize and apply adaptive optics methods developed in the Ji lab to select cutting-edge high- speed, large-depth, and large-scale activity recording modalities for high-accuracy measurements of neural activity in vivo.
项目总结 为了理解大脑中的计算,我们需要高精度地监测神经回路的活动, 这就需要具有高空间和时间分辨率的方法。非侵入性,有能力解决 亚细胞结构、光学显微镜已广泛应用于神经科学领域,具有多种 开发的方法用于在高速、大深度和/或大空间尺度上对神经活动进行成像。为 例如,发展了自由空间角啁啾增强延迟双光子荧光显微镜来记录 活体脑组织中khz帧频率的膜电压。三光子荧光显微镜--一种新兴的 使用比双光子荧光显微镜更长波长的激发光的方法,具有很大的 该仪器具有穿透深度,能够对小鼠大脑中超过1毫米深的结构进行成像。一种替代 点扫描多光子荧光显微镜、单光子宽场荧光显微镜 也被应用于活体监测大脑活动。最常见的情况是,整个样本都被照亮 以及由物镜收集并用相机成像的发出的荧光,这使得快速活动成为可能 浅层结构的成像,有时横向超过毫米。为了获得准确的 然而,对活体神经活动的测量,必须与 当这些显微镜方法应用于脑组织时。生物的光学不均匀性 组织本身会扭曲成像光,并阻止所有显微镜模式实现其设计 活体内的表现。当应用于活动成像时,这种退化可能会导致错误的结论。这里, 我们建议优化和应用冀中星实验室开发的自适应光学方法,以选择尖端的高性能 用于高精度神经测量的快速、大深度和大范围活动记录方式 活体内活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NA Ji其他文献

NA Ji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NA Ji', 18)}}的其他基金

Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
  • 批准号:
    10717610
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
  • 批准号:
    10543177
  • 财政年份:
    2021
  • 资助金额:
    $ 57.74万
  • 项目类别:
Adaptive optical microscopy for high-accuracy recording of neural activity in vivo
用于高精度记录体内神经活动的自适应光学显微镜
  • 批准号:
    10048013
  • 财政年份:
    2021
  • 资助金额:
    $ 57.74万
  • 项目类别:
Cell-type specific characterization of neuronal activity throughout V1
V1 期间神经元活动的细胞类型特异性特征
  • 批准号:
    10231008
  • 财政年份:
    2018
  • 资助金额:
    $ 57.74万
  • 项目类别:
Cell-type specific characterization of neuronal activity throughout V1
V1 期间神经元活动的细胞类型特异性特征
  • 批准号:
    10438695
  • 财政年份:
    2018
  • 资助金额:
    $ 57.74万
  • 项目类别:
High-speed volumetric imaging of neural activity throughout the living brain
整个活体大脑神经活动的高速体积成像
  • 批准号:
    9404832
  • 财政年份:
    2017
  • 资助金额:
    $ 57.74万
  • 项目类别:

相似海外基金

CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives
职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制
  • 批准号:
    2338596
  • 财政年份:
    2024
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Continuing Grant
THE NIH NEUROBIOBANK BRAIN AND TISSUE REPOSITORY (NBTR) TO PROVIDE SERVICES THAT WILL ACTIVELY ACQUIRE, RECEIVE, STORE, CURATE, PRESERVE, AND DISTRIBUTE CNS AND RELATED BIOLOGICAL SPECIMENS TO QUALIFI
NIH NEUROBIOBANK 大脑和组织存储库 (NBTR) 提供积极获取、接收、存储、整理、保存和分发 CNS 及相关生物样本的服务,以确保符合资格
  • 批准号:
    10948523
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
Investigating brain health and episodic memory function at midlife: the role of biological sex and menopause status
研究中年时的大脑健康和情景记忆功能:生物性别和更年期状态的作用
  • 批准号:
    494149
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Operating Grants
Understanding of biological mechanisms of resilience based on gut-brain axis
基于肠脑轴的弹性生物学机制的理解
  • 批准号:
    23K17634
  • 财政年份:
    2023
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding the link between sociocultural and biological factors to brain health across race & ethnicity in midlife
了解社会文化和生物因素与跨种族大脑健康之间的联系
  • 批准号:
    10429375
  • 财政年份:
    2022
  • 资助金额:
    $ 57.74万
  • 项目类别:
Understanding the link between sociocultural and biological factors to brain health across race & ethnicity in midlife
了解社会文化和生物因素与跨种族大脑健康之间的联系
  • 批准号:
    10627936
  • 财政年份:
    2022
  • 资助金额:
    $ 57.74万
  • 项目类别:
The impact of biological sex on the brain language network
生物性别对大脑语言网络的影响
  • 批准号:
    RGPIN-2022-04409
  • 财政年份:
    2022
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Discovery Grants Program - Individual
Development of blood-brain barrier-crossing antibodies utilizing the biological features of glucose transporters
利用葡萄糖转运蛋白的生物学特性开发血脑屏障跨越抗体
  • 批准号:
    21K18268
  • 财政年份:
    2021
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
CAREER: Biological Timing and Brain Circuits: Circadian influences on Prefrontal Cortex function
职业:生物计时和大脑回路:昼夜节律对前额皮质功能的影响
  • 批准号:
    2042207
  • 财政年份:
    2020
  • 资助金额:
    $ 57.74万
  • 项目类别:
    Continuing Grant
Regulation and biological functions of mRNA Alternative Polyadenylation in the Brain
大脑中 mRNA 选择性多聚腺苷酸化的调节和生物学功能
  • 批准号:
    10334512
  • 财政年份:
    2020
  • 资助金额:
    $ 57.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了