Homology of Linear Groups with Applications to Algebraic K-theory

线性群的同调及其在代数 K 理论中的应用

基本信息

  • 批准号:
    0070119
  • 负责人:
  • 金额:
    $ 7.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2002-09-30
  • 项目状态:
    已结题

项目摘要

Knudson studies the homology of linear groups over various rings of interest in algebraic K-theory. In this project he focuses attention on the low-dimensional homology groups of the general linear group over the coordinate ring of an elliptic curve over a number field with the goal of proving that the second K-group of such a curve has finite rank. This extends Knudson's previous work on the homology of rank one groups over such rings. In addition, a new homology theory based on algebraic cycles in the product of a scheme with the simplicial classifying scheme of an algebraic group is constructed and its properties investigated. The hope is that this construction will lead to a proof of the Friedlander-Milnor conjecture concerning the homology of algebraic groups made discrete. Also, the investigator's previous work on the structure of special linear groups over integral Laurent polynomial rings is used in the study of the Burau representation of the braid groups. This representation is known to be faithful for three strings and unfaithful for five or more strings; the remaining case of four strings is singled out for study in this project. Finally, Knudson studies the completion of a discrete group relative to a Zariski dense representation in a reductive group over a field of positive characteristic. This generalizes the classical unipotent completion of a group and extends to positive characteristic R. Hain's work in characteristic zero.A scheme is a geometric object constructed from solution sets of polynomial equations. Algebraic K-theory associates to a scheme a sequence of groups which encode information about the scheme. One aspect of this project is the study of the K-groups of an elliptic curve. Such curves have remarkably rich structure and appear in various branches of mathematics such as algebraic geometry and coding theory. A seemingly unrelated part of this project concerns the so-called Burau representation of the braid groups which is intimately connected with knot theory. These diverse topics are unified by studying the structure of groups of matrices with entries in various rings (the coordinate ring of the elliptic curve in the first case and the ring of integral Laurent polynomials in the second). The hope is to solve several outstanding conjectures about these objects.
克努森研究了代数K-理论中各种感兴趣的环上的线性群的同调。 在这个项目中,他专注于低维同调群的一般线性群的坐标环的椭圆曲线在一个数字领域的目标是证明第二个K-群这样的曲线有有限的秩。 这扩展了克努森以前的工作同源的秩一组等环。 此外,基于代数群的单分类方案与方案乘积的代数圈,构造了一个新的同调理论,并研究了它的性质。 希望是,这一建设将导致一个证明弗里德兰德-米尔诺猜想有关的同源性代数群离散。 此外,调查员以前的工作的结构,特殊的线性群的积分洛朗多项式环被用于研究的布劳表示的辫子群。 这种表示法对三个字符串是忠实的,对五个或更多字符串是不忠实的;剩下的四个字符串的情况在这个项目中被挑出来研究。 最后,克努森研究了一个正特征域上的约化群中的一个离散群相对于一个Zebraki稠密表示的完备性。 这推广了群的经典幂幺完备化,并推广到正特征R。海恩在特征零点上的工作。 代数K理论将一个方案与一系列编码该方案信息的群相关联。 该项目的一个方面是研究椭圆曲线的K群。 这样的曲线具有非常丰富的结构,并出现在数学的各个分支,如代数几何和编码理论。 这个项目的一个看似无关的部分涉及所谓的布劳表示的辫子群,这是密切相关的结理论。 这些不同的主题是统一的研究结构组的矩阵条目在各种环(坐标环的椭圆曲线在第一种情况下和环的积分洛朗多项式在第二)。希望能解决几个关于这些物体的悬而未决的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Knudson其他文献

Discrete Morse theory on Ω<em>S</em><sup>2</sup>
  • DOI:
    10.1016/j.topol.2024.109185
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lacey Johnson;Kevin Knudson
  • 通讯作者:
    Kevin Knudson

Kevin Knudson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Knudson', 18)}}的其他基金

Homology of Linear Groups with Applications to Algebraic K-theory
线性群的同调及其在代数 K 理论中的应用
  • 批准号:
    0242906
  • 财政年份:
    2002
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627503
  • 财政年份:
    1996
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Fellowship Award

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
  • 批准号:
    2154408
  • 财政年份:
    2022
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Standard Grant
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2022
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Discovery Grants Program - Individual
MPS-Ascend: Representation Theory of General Linear Groups over Finite Local Principal Ideal Rings
MPS-Ascend:有限局部主理想环上的一般线性群表示论
  • 批准号:
    2213166
  • 财政年份:
    2022
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Fellowship Award
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2021
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2020
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, piecewise linear representations, and linear 2-representations
群、分段线性表示和线性 2-表示
  • 批准号:
    FT180100069
  • 财政年份:
    2019
  • 资助金额:
    $ 7.44万
  • 项目类别:
    ARC Future Fellowships
Algorithms for generalized Arthur packets for general linear groups
一般线性群的广义阿瑟包算法
  • 批准号:
    540624-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 7.44万
  • 项目类别:
    University Undergraduate Student Research Awards
Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
线性绞丝理论计算量子群表示范畴及其在量子拓扑中的应用
  • 批准号:
    19K14528
  • 财政年份:
    2019
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2019
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
  • 批准号:
    1801951
  • 财政年份:
    2018
  • 资助金额:
    $ 7.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了