Complexity of operations with Pfaffian and Noetherian functions and effective o-minimality
普法夫函数和诺特函数运算的复杂性以及有效的 o 极小性
基本信息
- 批准号:0070666
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A. Gabrielov proposes to continue research on the theory of Pfaffian and Noetherian functions (analytic functions satisfying systems of partial differential equations with polynomial coefficients), with applications to quantifier elimination, o-minimality, and computational complexity. The goal of this research is to establish effective upper bounds for the complexity of algebro-geometric operations on Pfaffian functions and the sets defined by expressions with such functions in the real domain. This can be considered as a quantitative, effective version of the o-minimal theory of Pfaffian functions. For Noetherian functions, where global o-minimality fails, the goal is to develop local real and complex analogs of this theory.Modern computer algebra systems allow one to perform on a computer many operations with algebraic equations and inequalities previously considered the domain of abstract algebraic geometry. One of the latests achievements is an algorithm for the resolution of singularities of systems of algebraic equations. The results can be applied to such practical problems as visualisation, robotics, and the coding theory. The complexity of computer codes performing these operations becomes a practically important problem. This complexity usually grows fast with the degree of polynomials. The Pfaffian theory allows one to significantly reduce the computational complexity of operations on "fewnomials" - polynomials of high degree with few non-zero terms. The goal of the proposed research is to combine the Pfaffian theory with the algorithmic resolution of singularities, in order to develop efficient computational procedures for fewnomial systems.
加布里埃洛夫建议继续研究Pfaffian函数和Noether函数(满足多项式系数的偏微分方程组的解析函数)的理论,并将其应用于量词消除、o-最小性和计算复杂性。本研究的目的是建立实域上Pfaffian函数的代数几何运算的复杂性的有效上界,以及由Pfaffian函数的表达式定义的集合。这可以被认为是Pfaffian函数的o-极小理论的一个定量的、有效的版本。对于Noether函数,当全局o-极小值失效时,目标是发展这一理论的局部实数和复数类比。现代计算机代数系统允许人们在计算机上执行许多以前被认为是抽象代数几何领域的代数方程和不等式的运算。最新的成果之一是解代数方程组奇点的算法。研究结果可应用于可视化、机器人学、编码理论等实际问题。执行这些操作的计算机代码的复杂性成为一个实际重要的问题。这种复杂性通常随着多项式次数的增加而快速增长。Pfaffian理论使人们能够显著降低“几项式”的运算复杂性--高次多项式的非零项很少。这项研究的目的是将Pfaffian理论与奇点的算法分解相结合,以开发针对少数几项式系统的高效计算程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Gabrielov其他文献
Lipschitz geometry of surface germs in $${\mathbb {R}}^4$$ : metric knots
- DOI:
10.1007/s00029-023-00847-w - 发表时间:
2023-05-19 - 期刊:
- 影响因子:1.200
- 作者:
Lev Birbrair;Michael Brandenbursky;Andrei Gabrielov - 通讯作者:
Andrei Gabrielov
Lipschitz geometry of pairs of normally embedded Hölder triangles
- DOI:
10.1007/s40879-022-00572-2 - 发表时间:
2022-08-26 - 期刊:
- 影响因子:0.500
- 作者:
Lev Birbrair;Andrei Gabrielov - 通讯作者:
Andrei Gabrielov
On Topological Lower Bounds for Algebraic Computation Trees
- DOI:
10.1007/s10208-015-9283-7 - 发表时间:
2015-08-27 - 期刊:
- 影响因子:2.700
- 作者:
Andrei Gabrielov;Nicolai Vorobjov - 通讯作者:
Nicolai Vorobjov
Lipschitz geometry and combinatorics of abnormal surface germs
- DOI:
10.1007/s00029-021-00716-4 - 发表时间:
2021-10-23 - 期刊:
- 影响因子:1.200
- 作者:
Andrei Gabrielov;Emanoel Souza - 通讯作者:
Emanoel Souza
Topological lower bounds for arithmetic networks
- DOI:
10.1007/s00037-016-0145-8 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Andrei Gabrielov;Nicolai Vorobjov - 通讯作者:
Nicolai Vorobjov
Andrei Gabrielov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Gabrielov', 18)}}的其他基金
Semi-monotone sets and triangulation of definable families
半单调集和可定义族的三角剖分
- 批准号:
1161629 - 财政年份:2012
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Homotopy, Complexity and O-Minimality
同伦、复杂性和 O-极小性
- 批准号:
0801050 - 财政年份:2008
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Collaborative Research: CMG: Cellular Automata, Directed Graphs, and the Modeling of Earthquake and Landforms
合作研究:CMG:元胞自动机、有向图以及地震和地貌建模
- 批准号:
0327598 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Topological complexity and quantitative o-minimality
拓扑复杂性和定量最小性
- 批准号:
0245628 - 财政年份:2003
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Effective Non-oscillation of Solutions of Fuchsian Systems of Differential Equations and Abelian Integrals
微分方程和阿贝尔积分的Fuchsian系统解的有效不振荡
- 批准号:
0200861 - 财政年份:2002
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Subanalytic Sets, Pfaffian Functions, and Complexity of Quantifier Simplification
亚解析集、普法夫函数和量词简化的复杂性
- 批准号:
9704745 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似海外基金
HiPERCAM and ULTRACAM operations
HiPERCAM 和 ULTRACAM 操作
- 批准号:
ST/Z000033/1 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Research Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
- 批准号:
2348720 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
- 批准号:
2342833 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
- 批准号:
2343062 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Conference: Artificial Intelligence Summer School for Computer Science and Operations Research Education; College Park, Maryland; 19-24 May 2024
会议:计算机科学和运筹学教育人工智能暑期学校;
- 批准号:
2408982 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
- 批准号:
10087309 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Collaborative R&D
Tropical Cyclone Operations and Research Forum (TCORF)/Interdepartmental Hurricane Conference (IHC); Lakeland, Florida; March 4-8, 2024
热带气旋运行与研究论坛 (TCORF)/跨部门飓风会议 (IHC);
- 批准号:
2413746 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
I-Corps: Translation potential of minimally invasive tubular retractors to maximize visualization in spine operations
I-Corps:微创管状牵开器的翻译潜力,可最大限度地提高脊柱手术的可视化
- 批准号:
2422243 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant