Homotopy, Complexity and O-Minimality
同伦、复杂性和 O-极小性
基本信息
- 批准号:0801050
- 负责人:
- 金额:$ 21.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Andrei Gabrielov proposes to investigate homotopy types of definable sets in o-minimal expansions of real closed fields, and the algorithmic complexity of operations with such sets and their families. The fundamental question is to estimate the topological complexity of a definable set in terms of the structural complexity of its defining formula. Recent developments in algorithmic real algebraic geometry and topological o-minimality suggest that an answer to that question can be obtained for a wide class of sets definable in o-minimal structures with the Bezout-type finiteness property. Notably, a combinatorial-geometric construction suggested by A. Gabrielov and N. Vorobjov allows one to approximate arbitrary definable sets by homotopy equivalent definably compact sets, simplifying considerably the study of their topology. Furthermore, homotopy colimit construction allows one to approximate a set defined by a formula with existential quantifiers by a homotopy equivalent simplicial object defined by a quantifier-free formula, and to employ the descent spectral sequence to compute topological invariants of the original set. The proposed research will advance our understanding of the topological properties of the sets definable in o-minimal structures, and of the algorithmic complexity of operations with such sets and their families. It will provide new tools for the o-minimal algebraic topology.The goal of the proposed research is to develop new upper bounds on the topological complexity of semialgebraic sets (defined by formulas with equations and inequalities between polynomials in several real variables)and their generalizations known as definable sets in o-minimal structures. Given an appropriate measure of complexity, such as Bezout theorem bounding the number of zeros of a polynomial, the topological complexity of a definable set depends on the structural complexity of its defining formula. Recently A. Gabrielov and N. Vorobjov suggested a construction replacing a general definable set with a homotopy equivalent compact set, applying a simple combinatorial procedure to the defining formula of the original set. Thus the problem of the topological complexity of the general definable sets can be reduced to the more tractable problem for the compact sets. The proposed research will establish new connections between o-minimal theory, topology, combinatorics, and real algebraic geometry. It will provide new combinatorial and topological tools for development of faster computational algorithms in real algebraic and analytic geometry and its applications in control theory, visualization, and computer-aided design.
Andrei Gabrielov研究了实闭域0 -极小展开式中可定义集合的同伦类型,以及这些集合及其族的运算的算法复杂度。基本问题是根据定义公式的结构复杂性来估计可定义集合的拓扑复杂性。算法实代数几何和拓扑o-极小性的最新发展表明,对于具有bezout型有限性的o-极小结构中可定义的大量集合,可以得到这个问题的答案。值得注意的是,a . Gabrielov和N. Vorobjov提出的组合几何构造允许人们用同伦等价的可定义紧集近似任意可定义集,大大简化了对其拓扑的研究。此外,同伦极限构造允许用一个无量词公式定义的同伦等效简单对象逼近一个有存在量词公式定义的集合,并利用下降谱序列计算原集合的拓扑不变量。所提出的研究将促进我们对0 -极小结构中可定义集合的拓扑性质的理解,以及对这些集合及其族的操作的算法复杂性的理解。它将为0 -极小代数拓扑提供新的工具。提出的研究目标是建立半代数集(由若干实变量多项式之间的方程和不等式的公式定义)的拓扑复杂性的新上界及其在o-极小结构中的推广称为可定义集。给定适当的复杂性度量,例如限定多项式零个数的Bezout定理,可定义集合的拓扑复杂性取决于其定义公式的结构复杂性。最近a . Gabrielov和N. Vorobjov提出了用同伦等价紧集代替一般可定义集的构造,将一个简单的组合过程应用于原集的定义公式。因此,一般可定义集的拓扑复杂性问题可以简化为更易于处理的紧集问题。提出的研究将建立0极小理论、拓扑学、组合学和真正的代数几何之间的新联系。它将提供新的组合和拓扑工具,用于在实际代数和解析几何中开发更快的计算算法及其在控制理论、可视化和计算机辅助设计中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Gabrielov其他文献
Lipschitz geometry of surface germs in $${\mathbb {R}}^4$$ : metric knots
- DOI:
10.1007/s00029-023-00847-w - 发表时间:
2023-05-19 - 期刊:
- 影响因子:1.200
- 作者:
Lev Birbrair;Michael Brandenbursky;Andrei Gabrielov - 通讯作者:
Andrei Gabrielov
Lipschitz geometry of pairs of normally embedded Hölder triangles
- DOI:
10.1007/s40879-022-00572-2 - 发表时间:
2022-08-26 - 期刊:
- 影响因子:0.500
- 作者:
Lev Birbrair;Andrei Gabrielov - 通讯作者:
Andrei Gabrielov
On Topological Lower Bounds for Algebraic Computation Trees
- DOI:
10.1007/s10208-015-9283-7 - 发表时间:
2015-08-27 - 期刊:
- 影响因子:2.700
- 作者:
Andrei Gabrielov;Nicolai Vorobjov - 通讯作者:
Nicolai Vorobjov
Lipschitz geometry and combinatorics of abnormal surface germs
- DOI:
10.1007/s00029-021-00716-4 - 发表时间:
2021-10-23 - 期刊:
- 影响因子:1.200
- 作者:
Andrei Gabrielov;Emanoel Souza - 通讯作者:
Emanoel Souza
Topological lower bounds for arithmetic networks
- DOI:
10.1007/s00037-016-0145-8 - 发表时间:
2016-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Andrei Gabrielov;Nicolai Vorobjov - 通讯作者:
Nicolai Vorobjov
Andrei Gabrielov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Gabrielov', 18)}}的其他基金
Perspectives of modern complex analysis
现代复杂分析的观点
- 批准号:
1362554 - 财政年份:2014
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Semi-monotone sets and triangulation of definable families
半单调集和可定义族的三角剖分
- 批准号:
1161629 - 财政年份:2012
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Collaborative Research: CMG: Cellular Automata, Directed Graphs, and the Modeling of Earthquake and Landforms
合作研究:CMG:元胞自动机、有向图以及地震和地貌建模
- 批准号:
0327598 - 财政年份:2003
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Topological complexity and quantitative o-minimality
拓扑复杂性和定量最小性
- 批准号:
0245628 - 财政年份:2003
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Effective Non-oscillation of Solutions of Fuchsian Systems of Differential Equations and Abelian Integrals
微分方程和阿贝尔积分的Fuchsian系统解的有效不振荡
- 批准号:
0200861 - 财政年份:2002
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Complexity of operations with Pfaffian and Noetherian functions and effective o-minimality
普法夫函数和诺特函数运算的复杂性以及有效的 o 极小性
- 批准号:
0070666 - 财政年份:2000
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Subanalytic Sets, Pfaffian Functions, and Complexity of Quantifier Simplification
亚解析集、普法夫函数和量词简化的复杂性
- 批准号:
9704745 - 财政年份:1997
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
相似海外基金
Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
- 批准号:
2404023 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Standard Grant
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/S034420/2 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Fellowship
Addressing the complexity of future power system dynamic behaviour
解决未来电力系统动态行为的复杂性
- 批准号:
MR/Y00390X/1 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
Low-complexity配列の相分離液滴の分光学的解析法の開発
低复杂度排列相分离液滴光谱分析方法的发展
- 批准号:
23K23857 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Building Molecular Complexity Through Enzyme-Enabled Synthesis
通过酶合成构建分子复杂性
- 批准号:
DE240100502 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Discovery Early Career Researcher Award
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Fellowship
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Continuing Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
- 批准号:
BB/Y008898/1 - 财政年份:2024
- 资助金额:
$ 21.9万 - 项目类别:
Research Grant