Semi-monotone sets and triangulation of definable families

半单调集和可定义族的三角剖分

基本信息

  • 批准号:
    1161629
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

Andrei Gabrielov and Saugata Basu propose to extend some fundamental geometric operations on the sets definable in an o-minimal structure to one-parametric definable families of such sets. In particular, given a one-parametric monotone (increasing) definable family of subsets of a definable compact K, the goal is to construct a definable triangulation of K such that, inside each simplex of the triangulation, the family is equivalent to one of the "standard" families, classified by lex-monotone Boolean functions. Other classical geometric constructions that can be extended to definable families include cylindrical cell decomposition and Whitney stratification. Existence of such geometric constructions would allow one to investigate the "fine structure" of a definable family, and to compute its topological invariants, such as vanishing homology, intersection homology and the homotopy type of its Hausdorff limit. A monotone one-parametric definable family can be alternatively viewed as the family of sub-level sets of a definable function, so the proposed research can be viewed as a topological resolution of singularities of definable functions. The original motivation for the proposed research comes from the theory of approximation of definable sets by homotopy equivalent definable families of compact sets developed by Gabrielov and Vorobjov. Triangulation of a definable family would provide a crucial tool for the proof of the main conjecture of that theory.The proposed research would substantially enhance our understanding of geometry, topology and combinatorics of the sets definable in an o-minimal structure, and of the families of such sets. It suggests a new approach to the resolution of singularities of definable functions. The expected results would be new even for real semi-algebraic sets, the most basic (and the most important in applications) of all o-minimal structures. The proposed research will have impact in several different areas of pure and applied mathematics. Firstly, it will introduce fundamental new tools in the areas of real algebraic and o-minimal geometry, which will have direct impact in the the study of geometric and topological properties of definable sets in arbitrary o-minimal structure, including topological resolution of singularities in this context. It will also potentially have impact in certain areas of currently active interest in algebraic geometry and topological combinatorics. Finally, it is very likely the theory of semi-monotone sets and monotone maps will find applications in the extremely active areas of discrete and computational geometry (around the theory of persistent homology), as well as in control theory and dynamical systems. One such application to "toric cubes" emerged recently. These semi-algebraic sets which are related to edge-product sets in phylogenetics are closures of graphs of monotone maps, thus they are topologically closed balls. At a higher level, the proposed research will bring ideas and techniques developed originally in the context of o-minimal geometry, to currently important problems in several other areas - in particular, algebraic geometry, discrete and computational geometry and control theory.
Andrei Gabrielov和Saugata Basu提出将一些基本的几何运算推广到o-极小结构中可定义的集合上,并推广到此类集合的单参数可定义族。特别是,给定一个可定义紧致K的子集的单参数单调(递增)可定义族,目标是构造K的一个可定义三角剖分,使得在三角剖分的每个单形内,该族等价于一个“标准”族,由lex-monotone布尔函数分类。其他经典的几何结构,可以扩展到可定义的家庭包括圆柱形细胞分解和惠特尼分层。这样的几何构造的存在将允许人们研究一个可定义族的“精细结构”,并计算其拓扑不变量,如消失同调、相交同调及其Hausdorff极限的同伦类型。单调单参数可定义函数族可以看作是可定义函数的子水平集族,因此本文的研究可以看作是可定义函数奇异性的一种拓扑解析.提出的研究的最初动机来自于Gabrielov和Vorobjov开发的同伦等价可定义紧集族对可定义集的逼近理论。可定义集合族的三角剖分将为证明该理论的主要猜想提供一个重要的工具,所提出的研究将大大提高我们对可定义集合族的几何、拓扑和组合学的理解。它提出了一种新的方法来解决可定义函数的奇异性。预期的结果将是新的,即使是真实的半代数集,最基本的(和最重要的应用)的所有o-最小结构。拟议的研究将在纯数学和应用数学的几个不同领域产生影响。首先,它将介绍真实的代数和o-极小几何领域的基本新工具,这将直接影响到任意o-极小结构中可定义集的几何和拓扑性质的研究,包括奇点的拓扑分解。它也将有可能在某些领域的影响,目前积极关注的代数几何和拓扑组合。最后,半单调集和单调映射的理论很可能会在离散和计算几何(围绕持久同调理论)以及控制理论和动力系统的非常活跃的领域中找到应用。 最近出现了一个这样的应用程序“复曲面立方体”。这些半代数集与遗传学中的边积集有关,它们是单调映射图的闭包,因而是拓扑闭球。在更高的层次上,拟议的研究将带来的想法和技术开发的背景下,O-最小的几何,目前重要的问题,在其他几个领域-特别是代数几何,离散和计算几何和控制理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Gabrielov其他文献

Lipschitz geometry of surface germs in $${\mathbb {R}}^4$$ : metric knots
  • DOI:
    10.1007/s00029-023-00847-w
  • 发表时间:
    2023-05-19
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Lev Birbrair;Michael Brandenbursky;Andrei Gabrielov
  • 通讯作者:
    Andrei Gabrielov
Lipschitz geometry of pairs of normally embedded Hölder triangles
  • DOI:
    10.1007/s40879-022-00572-2
  • 发表时间:
    2022-08-26
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Lev Birbrair;Andrei Gabrielov
  • 通讯作者:
    Andrei Gabrielov
On Topological Lower Bounds for Algebraic Computation Trees
Lipschitz geometry and combinatorics of abnormal surface germs
  • DOI:
    10.1007/s00029-021-00716-4
  • 发表时间:
    2021-10-23
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Andrei Gabrielov;Emanoel Souza
  • 通讯作者:
    Emanoel Souza
Topological lower bounds for arithmetic networks
  • DOI:
    10.1007/s00037-016-0145-8
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Andrei Gabrielov;Nicolai Vorobjov
  • 通讯作者:
    Nicolai Vorobjov

Andrei Gabrielov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Gabrielov', 18)}}的其他基金

Perspectives of modern complex analysis
现代复杂分析的观点
  • 批准号:
    1362554
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Homotopy, Complexity and O-Minimality
同伦、复杂性和 O-极小性
  • 批准号:
    0801050
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CMG: Cellular Automata, Directed Graphs, and the Modeling of Earthquake and Landforms
合作研究:CMG:元胞自动机、有向图以及地震和地貌建模
  • 批准号:
    0327598
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Topological complexity and quantitative o-minimality
拓扑复杂性和定量最小性
  • 批准号:
    0245628
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Effective Non-oscillation of Solutions of Fuchsian Systems of Differential Equations and Abelian Integrals
微分方程和阿贝尔积分的Fuchsian系统解的有效不振荡
  • 批准号:
    0200861
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Complexity of operations with Pfaffian and Noetherian functions and effective o-minimality
普法夫函数和诺特函数运算的复杂性以及有效的 o 极小性
  • 批准号:
    0070666
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Subanalytic Sets, Pfaffian Functions, and Complexity of Quantifier Simplification
亚解析集、普法夫函数和量词简化的复杂性
  • 批准号:
    9704745
  • 财政年份:
    1997
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Jointly convex operator perspective map having the power monotone property.
具有幂单调性质的联合凸算子透视图。
  • 批准号:
    23K03141
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithms and lower bounds for monotone dualization and tensor decomposition of constraint satisfaction hypergraphs
约束满足超图的单调对偶化和张量分解的算法和下界
  • 批准号:
    576241-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
CIF: Small: Signal Recovery Beyond Minimization: A Monotone Inclusion Framework
CIF:小:超越最小化的信号恢复:单调包含框架
  • 批准号:
    2211123
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic Triangulation of Monotone families
单调族的算法三角剖分
  • 批准号:
    2427789
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Steenrod operations in non-monotone symplectic manifolds.
非单调辛流形中的量子斯汀罗德运算。
  • 批准号:
    2434378
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Monotone Methods in Reputations: Behavioral Predictions and Reputation Sustainability
声誉中的单调方法:行为预测和声誉可持续性
  • 批准号:
    1947021
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
  • 批准号:
    RGPIN-2016-03816
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
  • 批准号:
    19K13666
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了