Derived Moduli Spaces and Applications

导出模空间及应用

基本信息

  • 批准号:
    0070654
  • 负责人:
  • 金额:
    $ 6.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2001-04-30
  • 项目状态:
    已结题

项目摘要

Working with his colleagues, the investigator will develop the formalism of Derived Deformation Theory. This theory aims to resolve in a systematic fashion many of the difficulties arising from the fact that moduli spaces in algebraic geometry relatedto higher dimensional varieties are typically singular. The basic idea is that the correct object to consider for a moduli problem is some ``derived moduli space'' which should be manifestly smooth in an appropriate sense and should carry a differential-graded structure sheaf. The usual moduli space is obtained from the derived version as the degree-zero truncation, and this explains its singularnature. In recent work, Ciocan-Fontanine and Kapranov defined andstudied the ``right derived category of schemes'', whose objects are differential-graded schemes, and they have constructed the derived version of Grothendieck's Quot scheme. The investigator will extend the formalism to a larger category of differential-graded stacks, and use it to construct derived versions of some other important moduli spaces in algebraic geometry (such as moduli of vector bundles, stable maps, etc.). As a first application of the theory, it is proposed to give a simpler and more general construction of the virtual fundamentalclasses of Behrend-Fantechi and Li-Tian. This new construction is expected to be better suited to investigate the properties of virtual fundamental classes in the case of moduli of stable maps of higher genus to a hypersurface in a Fano manifold and to understand mathematicallymirror symmetry at higher genus. The project has also a part dealingwith some explicit calculations of genus zero Gromov-Witten invariants of flag manifolds, and applications to mirror symmetry.This is research in the field of algebraic geometry, which is one of the oldest branches of modern mathematics. In recent years, the methods and ideas of algebraic geometry, especially the study of moduli spaces, have been employed in string theory, a very active part of theoretical physics. Developments in string theory have sparked a fruitful interaction between the two communities of researchers and have led to the discovery and study of many striking new phenomena. Mirror symmetry is one example. It is expected that a better understanding of moduli spaces in algebraic geometry will lead to more applications to string theory.
这位研究人员将与他的同事们合作,发展派生变形理论的形式主义。这一理论旨在系统地解决由于代数几何中与高维变体相关的模空间通常是奇异的这一事实而产生的许多困难。其基本思想是,模问题的正确目标是某种“导出模空间”,它在适当的意义上应该是明显光滑的,并且应该带有一个差分分次结构束。通常的模空间是由导出的零次截断形式得到的,这解释了它的奇异性。在最近的工作中,Ciocan-Fontanine和Kapranov定义和研究了以差分分次方案为对象的“右派生方案范畴”,并构造了Grothendieck的Quot方案的导出版本。研究人员将把这种形式推广到更大类别的微分分次堆,并利用它来构造代数几何中其他一些重要的模空间的派生形式(如向量丛的模、稳定映射等)。作为理论的首次应用,提出了Behrend-Fantechi和Li-Tian的虚拟基础类的一个更简单和更一般的构造。这种新结构有望更好地研究Fano流形中高亏格到超曲面的稳定映射的模的情况下虚拟基类的性质,并更好地理解高亏格上的数学对称.该项目还涉及旗形的亏格为零的Gromov-Witten不变量的一些显式计算,以及在镜像对称中的应用。这是代数几何领域的研究,这是现代数学中最古老的分支之一。近年来,代数几何的方法和思想,特别是模空间的研究,被用于弦理论,这是理论物理中非常活跃的部分。弦理论的发展引发了这两个研究群体之间卓有成效的互动,并导致了许多惊人的新现象的发现和研究。镜像对称性就是一个例子。人们期望,对代数几何中模空间的更好理解将导致弦理论的更多应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ionut Ciocan-Fontanine其他文献

Ionut Ciocan-Fontanine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ionut Ciocan-Fontanine', 18)}}的其他基金

Quasimap Theory and Gromov-Witten Invariants of Complete Intersections
拟映射理论和完全交集的 Gromov-Witten 不变量
  • 批准号:
    1601771
  • 财政年份:
    2016
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Wall-crossings in quasimap theory and applications
准图理论与应用中的穿墙
  • 批准号:
    1305004
  • 财政年份:
    2013
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Studies in Gromov-Witten Theory
格罗莫夫-维滕理论研究
  • 批准号:
    0702871
  • 财政年份:
    2007
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Three problems on Gromov-Witten invariants of algebraic varieties
代数簇的 Gromov-Witten 不变量的三个问题
  • 批准号:
    0303614
  • 财政年份:
    2003
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Derived Moduli Spaces and Applications
导出模空间及应用
  • 批准号:
    0196209
  • 财政年份:
    2000
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052936
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052750
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052934
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
  • 批准号:
    2052665
  • 财政年份:
    2021
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
The derived geometry of moduli spaces
模空间的导出几何
  • 批准号:
    2443002
  • 财政年份:
    2020
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Studentship
CAREER: Moduli Spaces and Derived Categories
职业:模空间和派生范畴
  • 批准号:
    1945478
  • 财政年份:
    2020
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Interactions of Derived Moduli Spaces and Gerbes with Elliptic Genera in Complex Geometry
复杂几何中导出模空间和Gerbes与椭圆属的相互作用
  • 批准号:
    376202359
  • 财政年份:
    2017
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Research Fellowships
Moduli Spaces, Derived Categories, and Motives
模空间、派生范畴和动机
  • 批准号:
    1601940
  • 财政年份:
    2016
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Continuing Grant
Workshop on Moduli Spaces, Derived Geometry, and Representation Theory
模空间、导出几何和表示论研讨会
  • 批准号:
    1446356
  • 财政年份:
    2014
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
Moduli spaces of objects in derived categories
派生类别中对象的模空间
  • 批准号:
    1160466
  • 财政年份:
    2011
  • 资助金额:
    $ 6.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了