CAREER: Moduli Spaces and Derived Categories
职业:模空间和派生范畴
基本信息
- 批准号:1945478
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many phenomena in mathematics and mathematical physics are described by systems of polynomial equations. The set of solutions of such a system of equations can have a very complicated and interesting shape. Typically the equations involve numbers which are regarded as “parameters.” The problem of determining how the geometric properties of the set of solutions change as one varies these parameters is called a “moduli problem,” and moduli problems are important to many subjects in algebra and geometry. This project will introduce a new approach to studying moduli problems, as well as applications of this new approach to several open problems inspired by high energy theoretical physics. The PI will work towards the training of students in this research field, through research projects with undergraduate students, mentoring of graduate students, and lectures aimed to k-12 students. One of the PI's goals is to build connections with industry where machine learning is involved. Specifically, the Principal Investigator will use recent developments in the theory of algebraic stacks and derived algebraic geometry to develop a general approach to moduli problems in algebraic geometry. The PI’s recent work on extending the methods and results of geometric invariant theory to arbitrary moduli problems has led to a relatively complete framework for constructing moduli spaces and for breaking large moduli problems into pieces which are easier to study. This project investigates some extensions of the foundational aspects of this work, as well as applications to several problems in enumerative geometry. The project also proposes applications to studying derived categories of coherent sheaves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学和数学物理中的许多现象都可以用多项式方程组来描述。这样的方程组的解的集合可以具有非常复杂和有趣的形状。通常,方程涉及被视为“参数”的数字。当一个人改变这些参数时,确定解的几何性质如何变化的问题被称为“模问题”,模问题对代数和几何中的许多学科都很重要。本项目将介绍一种研究模问题的新方法,以及这种新方法在高能理论物理启发下的几个开放问题中的应用。PI将通过与本科生的研究项目,研究生的指导和针对K-12学生的讲座,致力于培养学生在这一研究领域。PI的目标之一是与涉及机器学习的行业建立联系。具体而言,首席研究员将使用代数堆栈理论和派生代数几何的最新发展,以制定一个通用的方法来解决代数几何中的模数问题。PI最近的工作扩展的方法和结果的几何不变理论的任意模的问题,导致了一个相对完整的框架,用于构建模空间和打破大模的问题成件,这是更容易研究。这个项目调查一些扩展的基础方面的这项工作,以及应用到几个问题的枚举几何。该项目还提出了应用程序,以研究派生类别的连贯sheaves.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准.
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On properness of K-moduli spaces and optimal degenerations of Fano varieties
- DOI:10.1007/s00029-021-00694-7
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Harold Blum;Daniel Halpern-Leistner;Yuchen Liu;Chenyang Xu
- 通讯作者:Harold Blum;Daniel Halpern-Leistner;Yuchen Liu;Chenyang Xu
Learning selection strategies in Buchberger's algorithm
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Dylan Peifer;M. Stillman;Daniel Halpern-Leistner
- 通讯作者:Dylan Peifer;M. Stillman;Daniel Halpern-Leistner
Reductivity of the automorphism group of K-polystable Fano varieties
- DOI:10.1007/s00222-020-00987-2
- 发表时间:2019-06
- 期刊:
- 影响因子:3.1
- 作者:J. Alper;Harold Blum;Daniel Halpern-Leistner;Chenyang Xu-
- 通讯作者:J. Alper;Harold Blum;Daniel Halpern-Leistner;Chenyang Xu-
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Halpern-Leistner其他文献
The equivariant Verlinde formula on the moduli of Higgs bundles
- DOI:
- 发表时间:
2016-08 - 期刊:
- 影响因子:0
- 作者:
Daniel Halpern-Leistner - 通讯作者:
Daniel Halpern-Leistner
The noncommutative minimal model program
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Daniel Halpern-Leistner - 通讯作者:
Daniel Halpern-Leistner
Daniel Halpern-Leistner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Halpern-Leistner', 18)}}的其他基金
FRG: Collaborative Research: Derived Categories, Moduli Spaces, and Classical Algebraic Geometry
FRG:协作研究:派生范畴、模空间和经典代数几何
- 批准号:
2052936 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
- 批准号:
2338485 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
LEAPS-MPS: Describing Compactifications of Moduli Spaces of Varieties and Pairs.
LEAPS-MPS:描述簇和对模空间的紧化。
- 批准号:
2316749 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Complex dynamics via tropical moduli spaces
通过热带模空间的复杂动力学
- 批准号:
EP/X026612/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
- 批准号:
2236705 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant














{{item.name}}会员




