Boundary geometry and asymptotics in several complex variables
多个复变量中的边界几何和渐近
基本信息
- 批准号:0072237
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0072237Principal Investigator: David E. BarrettProfessor Barrett will investigate various topics in complexanalysis. One topic to be studied is the behavior of twodifferent systems of partial differential equations implementingdeformation of a real hypersurface in two-dimensional complexeuclidean space by the Levi-form of the hypersurface. Thesystems are analogous, respectively, to harmonic-mapping heatflow and to the Ricci-flow on the space of conformal metrics, butthese particular systems have special features (the role ofLorentzian geometry in the target space and the inclusion oflower-order terms which are not conjugation invariant in thesource space) that introduce new phenomena and difficulties. Theassociated steady-state system has known applications to functiontheory and engineering, and the study of the time-dependentversions given above may lead to new insights into analyticcontinuation. A second topic to be studied is the boundarybehavior of the Bergman kernel function (off the diagonal) andBergman representative coordinates on domains with corners, withparticular interest in the case of generic intersections ofstrictly pseudoconvex domains (the case of intersecting ballsserving as a key model problem).Professor Barrett will investigate various problems involvingmultiple parameters (the parameters are understood to lie in theso-called complex number system, a widely-used extension of thestandard number system). One topic involves the study of systemsof partial differential equations which serve to flatten asurface in the parameter space; sometimes the equations push thesurface to an equilibrium configuration (the situation issomewhat analogous to that of a soap film attached to a fixedwire boundary), but sometimes the surface breaks before reachingequilibrium (for example, this will happen if there is noavailable equilibrium configuration). The computation ofequilibrium configurations for these problems (or thedocumentation that no equilibrium exists) is important inclassical function theory, and is also a central topic in theengineering discipline known as "H-infinity control theory." Asecond topic to be studied is based on Stefan Bergman's method offinding a sort of "ideal form" for a region in complexmultiparameter space. In the one-parameter setting Bergman'smethod tells us how to perform the useful task of smoothing outcorners appearing in the boundary of the region (such smoothingis of fundamental importance for example in classicalaerodynamics); the proposed research will examine what happens tocorners in the multi-parameter setting.
摘要奖:DMS-0072237首席研究员:David E.Barrett教授将研究络合分析中的各种主题。要研究的一个主题是两个不同的偏微分方程组的行为,它们实现了二维复核空间中的实超曲面通过超曲面的Levi形式的变形。这些系统分别类似于调和映射热流和共形度量空间上的Ricci流,但这些特殊系统具有特殊的特征(洛伦兹几何在目标空间中的作用,以及在源空间中包含非共轭不变的低阶项),这带来了新的现象和困难。相关的稳态系统在泛函理论和工程上都有已知的应用,而对上述含时版本的研究可能导致对分析继续的新的见解。第二个要研究的主题是Bergman核函数(在对角线外)和Bergman代表坐标在有角域上的边界行为,特别是在严格伪凸域的一般相交的情况下(相交球作为关键模型问题的情况)。Barrett教授将研究涉及多个参数的各种问题(参数被理解为位于所谓的复数系统中,它是标准数系统的广泛使用的扩展)。一个主题涉及研究参数空间中用来展平表面的偏微分方程组;有时方程将表面推向平衡构型(这种情况有点类似于固定金属丝边界上的肥皂膜),但有时表面在达到平衡之前就会破裂(例如,如果没有可用的平衡构型,就会发生这种情况)。这些问题的平衡构型的计算(或关于不存在平衡的文献)是经典函数论中的重要内容,也是被称为“H-无穷控制理论”的工程学科的中心话题。第二个要研究的课题是基于Stefan Bergman的方法,为复杂的多参数空间中的一个区域寻找一种“理想形式”。在单参数设置中,Bergman的方法告诉我们如何执行对区域边界中出现的外角进行平滑的有用任务(这种平滑是非常重要的,例如在经典空气动力学中);拟议的研究将检查在多参数设置中角点发生了什么。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Barrett其他文献
Collaborative anthracology and cultural understandings of wood charcoal in Marra Country (northern Australia)
- DOI:
10.1007/s12520-024-02052-y - 发表时间:
2024-08-10 - 期刊:
- 影响因子:2.000
- 作者:
Matthew Walsh;Emilie Dotte-Sarout;Liam M. Brady;John Bradley;Jeremy Ash;Daryl Wesley;Shaun Evans;David Barrett - 通讯作者:
David Barrett
The Impact of New Information and Communication Technologies on the Development of Advanced Practice
新信息和通信技术对高级实践发展的影响
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
A. Cooper;D. Dowding;David Barrett - 通讯作者:
David Barrett
Defending the Multiple Realization Argument against the Identity Theory
针对身份理论捍卫多重实现论
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
David Barrett - 通讯作者:
David Barrett
Political Polarization and Social Media
政治两极分化和社交媒体
- DOI:
10.5840/philtopics202250218 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Barrett - 通讯作者:
David Barrett
Irregularity of the Bergman projection on worm domains in Cn
Cn 蠕虫域上 Bergman 投影的不规则性
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
David Barrett;Sonmez Sahutoglu - 通讯作者:
Sonmez Sahutoglu
David Barrett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Barrett', 18)}}的其他基金
Geometric and Analytic Problems on Real Hypersurfaces
真实超曲面上的几何和解析问题
- 批准号:
1500142 - 财政年份:2015
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Geometric and Analytic Properties of Real Hypersurfaces in Complex Euclidean and Projective Spaces
复欧几里得空间和射影空间中实超曲面的几何和解析性质
- 批准号:
1161735 - 财政年份:2012
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Geometry, Measures, and Integral Operators for Boundaries of Complex Domains
复杂域边界的几何、度量和积分算子
- 批准号:
0901205 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Where is the initial site of folic acid biotransformation in humans?
人体叶酸生物转化的起始位点在哪里?
- 批准号:
BB/F012594/1 - 财政年份:2008
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
Mathematical Sciences: Several Complex Variables
数学科学:几个复变量
- 批准号:
8715772 - 财政年份:1987
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
The Optimization of the Damping Properties of Structural Components
结构构件阻尼性能的优化
- 批准号:
8560810 - 财政年份:1986
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8211330 - 财政年份:1982
- 资助金额:
$ 7.5万 - 项目类别:
Fellowship Award
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Geometry and Asymptotics of Schubert Polynomials, Graph Colorings, and Flows on Graphs
舒伯特多项式的几何和渐近、图着色和图流
- 批准号:
2154019 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2017
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Rational Points via Asymptotics and Geometry
职业:通过渐近学和几何学有理点
- 批准号:
1553459 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Integrable systems in Geometry, Asymptotics and Inverse Problems
几何、渐近和反问题中的可积系统
- 批准号:
RGPIN-2016-06660 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
Discovery Grants Program - Individual
The Geometry, Topology, Asymptotics and Number Theory of the Jones Polynomial
琼斯多项式的几何、拓扑、渐近和数论
- 批准号:
1105678 - 财政年份:2011
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant