Problems in Statistical Model Building
统计模型构建中的问题
基本信息
- 批准号:0072292
- 负责人:
- 金额:$ 33.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT ABSTRACTProblems in Statistical Model Building. Grace Wahba, PI.This research is to further the development of Smoothing Spline ANOVA and related variational methods for multivariate function estimation and statistical model building, so that these methods may be used in analyses of very large complex heterogenous data sets as occur in demographic medical studies, environmental and climatic data analyses and classification problems in a variety of areas. These methods are flexible nonparametric methods, but generally contain commonly used parametric families as special cases. The general approach proceeds in the following steps: (i)propose families of models that are appropriate for specific areas of application, (ii) develop new numerical algorithms as required for fitting the models, (ii) develop further methods for tuning the models and providing accuracy estimates, (iii) develop information concerning the properties of the methods, including testing on realistic simulated observations where the `truth' is known, (iv) and applying the resulting methods to important data sets, with the expectation of extracting information from these data that is not obtainable by standard parametric methods.The goal of this project is provide to scientists in medical, environmental and atmospheric sciences and supervised machine learning, new and useful tools to more efficiently analyze their data. Tasks are proposed to develop new methods that are appropriate for more efficient data analysis in complex demographic studies which follow populations over time, collecting information useful for understanding relationships between possible risk factors and the incidence and progression of various diseases. Tasks are also proposed for the development of new methods that are appropriate for understanding relationships among various factors of interest in large environmental and atmospheric data sets with `non-standard' indirect observational data; and for exploiting some new methods in classification that have wide applicability for building classification algorithms based on learning from large data sets in very high dimensional spaces.
项目摘要:统计模型建立中的若干问题。格蕾丝·瓦巴,PI。本研究旨在进一步发展平滑样条方差分析及其相关的变分方法,用于多元函数估计和统计模型的建立,使这些方法可用于人口医学研究、环境和气候数据分析以及各种领域的分类问题的超大复杂异构数据集的分析。这些方法是灵活的非参数方法,但通常包含常用的参数族作为特殊情况。一般做法的步骤如下:(i)提出适合特定应用领域的模型族,(ii)根据拟合模型的需要开发新的数值算法,(ii)开发进一步的方法来调整模型并提供精度估计,(iii)开发有关方法属性的信息,包括在已知“真相”的现实模拟观测中进行测试,(iv)并将结果方法应用于重要数据集。期望从这些数据中提取出标准参数方法无法获得的信息。该项目的目标是为医学、环境和大气科学以及监督机器学习领域的科学家提供新的有用工具,以更有效地分析他们的数据。提出的任务是发展适合于在长期跟踪人口的复杂人口研究中更有效地分析数据的新方法,收集有助于了解可能的危险因素与各种疾病的发病率和进展之间关系的信息。还提出了发展新方法的任务,这些新方法适合于理解具有“非标准”间接观测数据的大型环境和大气数据集中各种感兴趣因素之间的关系;并开发了一些新的分类方法,这些方法广泛适用于构建基于从非常高维空间的大数据集学习的分类算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grace Wahba其他文献
NO . 1155 September 4 , 2009 Encoding Dissimilarity Data for Statistical Model Building
不 。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Grace Wahba - 通讯作者:
Grace Wahba
Grace Wahba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grace Wahba', 18)}}的其他基金
Distance and Dissimilarity Information in Statistical Model Building
统计模型构建中的距离和相异信息
- 批准号:
1308877 - 财政年份:2013
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
A New Paradigm for Multiple Correlated Outputs Given Dissimilarity and Other Information From Multiple Sources
考虑到来自多个来源的差异和其他信息,多个相关输出的新范式
- 批准号:
0906818 - 财政年份:2009
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
A New Paradigm for Classification Based on Dissimilarity Information via Regularized Kernel Estimation
基于正则核估计相异信息的分类新范式
- 批准号:
0604572 - 财政年份:2006
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
Reproducing Kernel Hilbert Space Methods in Statistical Model Building and Data Analysis
在统计模型构建和数据分析中再现核希尔伯特空间方法
- 批准号:
0505636 - 财政年份:2005
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
Statistical Model Building with Generalized Splines
使用广义样条建立统计模型
- 批准号:
9704758 - 财政年份:1997
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Model Building with Generalized Splines
数学科学:用广义样条建立统计模型
- 批准号:
9121003 - 财政年份:1992
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Model Building with Generalized Splines
数学科学:用广义样条建立统计模型
- 批准号:
9002566 - 财政年份:1990
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Advanced Methods in Semiparametric and Nonlinear Model Building
数学科学:半参数和非线性模型构建的高级方法
- 批准号:
8701836 - 财政年份:1987
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
Variational Methods in Simultaneous Assimilation and Init- ialization For Medium Range Numerical Weather Prediction
中期数值天气预报同时同化和初始化的变分法
- 批准号:
8410373 - 财政年份:1985
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
Mathematical Sciences and Computer Research: Multivariate and Multiresponse Estimation
数学科学和计算机研究:多元和多响应估计
- 批准号:
8404970 - 财政年份:1984
- 资助金额:
$ 33.52万 - 项目类别:
Continuing Grant
相似海外基金
Development of factor-divided statistical model for seakeeping performance analysis and experimental verification method
耐波性能分析分因子统计模型的建立及实验验证方法
- 批准号:
22H01702 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
- 批准号:
RGPIN-2021-02618 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Discovery Grants Program - Individual
Construction and Clinical Application of a 72-h Mortality Prediction Model for High D-dimer Patients: Validation by Comparison of Statistical and Machine Learning Analyses
高 D-二聚体患者 72 小时死亡率预测模型的构建和临床应用:通过统计和机器学习分析比较进行验证
- 批准号:
22K09170 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new statistical machine learning approach to model linkages among wildfires and belowground water
一种新的统计机器学习方法来模拟野火和地下水之间的联系
- 批准号:
569605-2022 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Postgraduate Scholarships - Doctoral
Structural estimation on the statistical learning model : Application on the competition and social policy for the digital economy
统计学习模型的结构估计:在数字经济竞争和社会政策中的应用
- 批准号:
22K01485 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Machine Learning for Model Predictive Control of Nonlinear Processes
用于非线性过程模型预测控制的统计机器学习
- 批准号:
2140506 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Standard Grant
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference for epidemic models accounting for population heterogeneity: computational efficiency & model development
考虑人口异质性的流行病模型的统计推断:计算效率
- 批准号:
RGPIN-2022-03292 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Model Selection and Model Comparison
模型选择和模型比较的统计方法
- 批准号:
RGPIN-2018-05849 - 财政年份:2021
- 资助金额:
$ 33.52万 - 项目类别:
Discovery Grants Program - Individual
Development of statistical model for analysis of dynamic of metabolic diseases using PET
开发利用 PET 分析代谢疾病动态的统计模型
- 批准号:
21KK0183 - 财政年份:2021
- 资助金额:
$ 33.52万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))