Reproducing Kernel Hilbert Space Methods in Statistical Model Building and Data Analysis
在统计模型构建和数据分析中再现核希尔伯特空间方法
基本信息
- 批准号:0505636
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Wahba, Grace G.Proposal ID: DMS - 0505636Original Title: Reproducing Kernel Hilbert Space Methods in StatisticalModel Building and Data AnalysisNew Title: Positive Definite Kernel Methods in Statistical ModelBuilding and Data AnalysisPositive definite functions (a.k.a."kernels") play a key role instatistical model building, classification, clustering and data mining. Such kernels provide a distance metric for elements in their domain, which may be functions (as in Reproducing Kernel Hilbert Spaces), or, more recently, trees, graphs, images, sounds, DNA and protein sequences, microarray gene expression data, text messages and otherobjects. A reasonable distance metric is a prerequesite for prediction, classification, and clustering, and methods for obtaining such metricsare an area of active research. The proposer will introduce, develop and study the properties of a new class of nonparametric methods for obtaining kernels in situations where noisy, crude, incomplete information related to dissimilarity between pairs of objects in arbitrary sets is available. The methods are called regularized kernel estimation, since they involve a tradeoff betweenfitting the crude information available and a penalty or complexity functional on the kernel, analogous to, but not the same as classicalregularization and the bias-variance tradeoff. Optimal tuning and dimensionality reduction procedures will be proposed and their properties studied. The methods proposed are believed to have new and important computational and theoretical advantages, and these will bedemonstrated, by development of efficient computational algorithms, by simulation, by development of the theory, and by application to a variety of scientific problems.This work is motivated by the goal of obtaining better methods for clustering and classifying objects mentioned above, by obtaining improved ways to describe the "distance" betweein objects. For example, microarray gene chips may contain information concerning, e. g. the type of tumor whose DMA is being studied, and it is anticipated that this research will provideimproved methods for extracting this information in cases where it is difficult to identify the type of tumor, and this will ultimately result in better diagnostic and treatmentoutcomes. Similarly, it is of interest to cluster protein sequences into functional classes, with the goal of identifying function by associating sequences that are "nearby". It is anticipated that the present research will provide a more efficient way of extracting information from crude or incomplete dissimilarity data and, contribute to the long-term technology of understanding protein function. Other potential applications includeimproved classification of weather states, with the goal of clusteringand classifying local situations that have similar outcomes, signaldetection in large neutrino detectors, classification of astronomical bodies, and classification and clustering problems in a variety of other scientific fields.
摘要Wahba,Grace G.提案ID:DMS -0505636原标题:统计模型构建和数据分析中的再生核希尔伯特空间方法新标题:统计模型构建和数据分析中的正定核方法正定函数(a.k.a.“核”)在统计模型建立、分类、聚类和数据挖掘中起着关键作用。 这样的内核提供了一个距离度量的元素在其域,这可能是函数(如在再生核希尔伯特空间),或最近,树,图形,图像,声音,DNA和蛋白质序列,微阵列基因表达数据,文本消息和其他对象。一个合理的距离度量是预测、分类和聚类的先决条件,获得这种度量的方法是一个活跃的研究领域。提议者将介绍、开发和研究一类新的非参数方法的性质,用于在与任意集合中的对象对之间的不相似性相关的嘈杂、粗糙、不完整信息可用的情况下获得内核。这些方法被称为正则化核估计,因为它们涉及拟合可用的粗信息和核上的惩罚或复杂性函数之间的权衡,类似于但不相同于经典正则化和偏差方差权衡。最佳的调整和降维程序将被提出,并研究其性质。所提出的方法被认为具有新的和重要的计算和理论优势,并且这些将通过有效的计算算法的发展、通过模拟、通过理论的发展以及通过应用于各种科学问题而被证明。这项工作的动机是为了获得更好的方法来对上述对象进行聚类和分类,通过获得改进的方法来描述物体之间的“距离”。例如,微阵列基因芯片可以包含关于,例如,G.肿瘤类型的DMA正在研究中,预计这项研究将提供改进的方法,在难以识别肿瘤类型的情况下提取这些信息,这将最终导致更好的诊断和治疗结果。类似地,感兴趣的是将蛋白质序列聚类到功能类别中,目的是通过关联“附近”的序列来鉴定功能。预计目前的研究将提供一种更有效的方法,从粗糙或不完整的相异数据中提取信息,并有助于了解蛋白质功能的长期技术。其他潜在的应用包括改进天气状态的分类,其目标是对具有类似结果的局部情况进行聚类和分类,大型中微子探测器中的信号检测,天体分类以及其他各种科学领域中的分类和聚类问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grace Wahba其他文献
NO . 1155 September 4 , 2009 Encoding Dissimilarity Data for Statistical Model Building
不 。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Grace Wahba - 通讯作者:
Grace Wahba
Grace Wahba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grace Wahba', 18)}}的其他基金
Distance and Dissimilarity Information in Statistical Model Building
统计模型构建中的距离和相异信息
- 批准号:
1308877 - 财政年份:2013
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
A New Paradigm for Multiple Correlated Outputs Given Dissimilarity and Other Information From Multiple Sources
考虑到来自多个来源的差异和其他信息,多个相关输出的新范式
- 批准号:
0906818 - 财政年份:2009
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
A New Paradigm for Classification Based on Dissimilarity Information via Regularized Kernel Estimation
基于正则核估计相异信息的分类新范式
- 批准号:
0604572 - 财政年份:2006
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
Problems in Statistical Model Building
统计模型构建中的问题
- 批准号:
0072292 - 财政年份:2000
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
Statistical Model Building with Generalized Splines
使用广义样条建立统计模型
- 批准号:
9704758 - 财政年份:1997
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Model Building with Generalized Splines
数学科学:用广义样条建立统计模型
- 批准号:
9121003 - 财政年份:1992
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Model Building with Generalized Splines
数学科学:用广义样条建立统计模型
- 批准号:
9002566 - 财政年份:1990
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Advanced Methods in Semiparametric and Nonlinear Model Building
数学科学:半参数和非线性模型构建的高级方法
- 批准号:
8701836 - 财政年份:1987
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
Variational Methods in Simultaneous Assimilation and Init- ialization For Medium Range Numerical Weather Prediction
中期数值天气预报同时同化和初始化的变分法
- 批准号:
8410373 - 财政年份:1985
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
Mathematical Sciences and Computer Research: Multivariate and Multiresponse Estimation
数学科学和计算机研究:多元和多响应估计
- 批准号:
8404970 - 财政年份:1984
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
相似国自然基金
多kernel环境下通用图形处理器缓存子系统性能优化研究
- 批准号:62162002
- 批准年份:2021
- 资助金额:36 万元
- 项目类别:地区科学基金项目
玉米Edk1(Early delayed kernel 1)基因的克隆及其在胚乳早期发育中的功能研究
- 批准号:31871625
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Kernel算子的仿射非线性系统故障诊断与容错控制研究及应用
- 批准号:61473004
- 批准年份:2014
- 资助金额:83.0 万元
- 项目类别:面上项目
非向量型Kernel学习机及其对动态形状模板的应用
- 批准号:60373090
- 批准年份:2003
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2022
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2021
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2021
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Analysis on reproducing kernel Hilbert spaces
再生核希尔伯特空间分析
- 批准号:
20K14334 - 财政年份:2020
- 资助金额:
$ 5.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2020
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2020
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Uncertainty Principles in Reproducing Kernel Hilbert Spaces
再现核希尔伯特空间的不确定性原理
- 批准号:
2000236 - 财政年份:2020
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
- 批准号:
RGPIN-2016-05914 - 财政年份:2019
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2019
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
- 批准号:
RGPIN-2018-04534 - 财政年份:2018
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual