Algebraic Methods in Systems Theory
系统论中的代数方法
基本信息
- 批准号:0072383
- 负责人:
- 金额:$ 11.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2004-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0072383RosenthalMathematically, convolutional codes can be viewed as linear systems over a finite field. The study of these codes requires a good understanding of the algebraic representation of linear systems. The proposed project therefore addresses a number of issues in mathematical systems theory and in coding theory. The main objectives of the proposal are: 1. New methods for constructing convolutional codes with a large free distance and a relatively small degree. 2. New techniques to tackle the decoding problem of convolutional codes in an algebraic manner. 3. An investigation of the class of low density parity check convolutional codes which constitutes a natural generalization of the class of low density parity check codes. For this project it is the ultimate goal to algebraically construct low density parity check convolutional codes whose encoding and decoding complexity is `near linear' and whose performance is `near capacity'.Convolutional codes are used in the data transmission of many communication systems. Applications range from airborne satellite transmission systems to terrestrial telephone lines. Most pictures transmitted from deep space involve in one way or another some encoding with a convolutional code. It is the goal of the proposed research to construct new powerful convolutional codes which can be efficiently encoded and decoded. Having such new codes would have several benefits. First and for all it would allow the construction of smaller and more energy efficient transmission devices which are still capable of doing reliable data communication. The research project will necessitate a mathematical investigation into the algebraic structure of convolutional codes. As it was outlined in the proposal this mathematical research could also lead to a new cryptographic protocol.
从数学上讲,卷积码可以看作是有限域上的线性系统。研究这些代码需要对线性系统的代数表示有很好的理解。因此,提议的项目解决了数学系统理论和编码理论中的一些问题。该提案的主要目标是:1。构造自由距离大、自由度小的卷积码的新方法。2. 以代数方式解决卷积码解码问题的新技术。3. 研究了低密度奇偶校验卷积码,它是低密度奇偶校验码的自然推广。对于这个项目,它的最终目标是代数构造低密度奇偶校验卷积码,其编码和解码的复杂性是“接近线性”,其性能是“接近容量”。卷积码用于许多通信系统的数据传输。应用范围从机载卫星传输系统到地面电话线路。大多数从深空传输的图片都以某种方式使用卷积码进行编码。本文的研究目标是构建新的强大的卷积码,使其能够有效地编码和解码。拥有这样的新法规将有几个好处。首先,它将允许建造更小、更节能的传输设备,这些设备仍然能够进行可靠的数据通信。该研究项目将需要对卷积码的代数结构进行数学研究。正如提案中概述的那样,这项数学研究也可能导致新的加密协议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joachim Rosenthal其他文献
Error-Correction Performance of Regular Ring-Linear LDPC Codes over Lee Channels
Lee通道上规则环线性LDPC码的纠错性能
- DOI:
10.48550/arxiv.2312.14674 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jessica Bariffi;Hannes Bartz;G. Liva;Joachim Rosenthal - 通讯作者:
Joachim Rosenthal
A Behavioral Approach to Singular Systems
- DOI:
10.1023/a:1006106222280 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:1.000
- 作者:
Vakhtang Lomadze;M. S. Ravi;Joachim Rosenthal;J. M. Schumacher - 通讯作者:
J. M. Schumacher
Geometrical and Numerical Design of Structured Unitary Space–Time Constellations
结构化酉空间的几何与数值设计
- DOI:
10.1109/tit.2006.878107 - 发表时间:
2006 - 期刊:
- 影响因子:2.5
- 作者:
Guangyue Han;Joachim Rosenthal - 通讯作者:
Joachim Rosenthal
Multiplicities of Points on Schubert Varieties in Grassmannians
格拉斯曼派舒伯特变奏的多重点
- DOI:
10.1023/a:1011253800374 - 发表时间:
1999 - 期刊:
- 影响因子:0.8
- 作者:
Joachim Rosenthal;A. Zelevinsky - 通讯作者:
A. Zelevinsky
Preface to the special issue on network coding and designs
- DOI:
10.1007/s10623-017-0443-4 - 发表时间:
2017-12-06 - 期刊:
- 影响因子:1.200
- 作者:
Simon R. Blackburn;Marcus Greferath;Camilla Hollanti;Mario Osvin Pavčević;Joachim Rosenthal;Leo Storme;Ángeles Vázquez-Castro;Alfred Wassermann - 通讯作者:
Alfred Wassermann
Joachim Rosenthal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joachim Rosenthal', 18)}}的其他基金
Research Conference: 2004 IMA Summer Program for Graduate Students in Coding and Cryptography; June 8-27, 2004; Notre Dame, IN
研究会议:2004 IMA 编码和密码学研究生暑期项目;
- 批准号:
0437347 - 财政年份:2004
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Research Conference: Mathematical Theory of Networks and Systems
研究会议:网络与系统数学理论
- 批准号:
0139236 - 财政年份:2002
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic Methods in Systems Theory
数学科学:系统论中的代数方法
- 批准号:
9610389 - 财政年份:1997
- 资助金额:
$ 11.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Methods in Systems Theory
数学科学:系统论中的代数方法
- 批准号:
9400965 - 财政年份:1994
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Systems Theory, Transfer Functions and Geometry
数学科学:系统论、传递函数和几何
- 批准号:
9201263 - 财政年份:1992
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
- 批准号:
2139462 - 财政年份:2022
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2018
- 资助金额:
$ 11.9万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: Computational Algebraic Methods for Systems of Partial Difference-Differential Equations
AF:小:偏差分-微分方程组的计算代数方法
- 批准号:
1714425 - 财政年份:2017
- 资助金额:
$ 11.9万 - 项目类别:
Standard Grant
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2017
- 资助金额:
$ 11.9万 - 项目类别:
Discovery Grants Program - Individual
Analysis of probabilistic systems by relational and algebraic methods
通过关系和代数方法分析概率系统
- 批准号:
16K21557 - 财政年份:2016
- 资助金额:
$ 11.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Aachen Dynamic Optimization Environment (ADE): Modeling and numerical methods for higher-order sensitivity analysis of differential-algebraic equation systems with optimization criteria
亚琛动态优化环境 (ADE):具有优化准则的微分代数方程系统高阶灵敏度分析的建模和数值方法
- 批准号:
281932795 - 财政年份:2016
- 资助金额:
$ 11.9万 - 项目类别:
Research Grants
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2016
- 资助金额:
$ 11.9万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2015
- 资助金额:
$ 11.9万 - 项目类别:
Discovery Grants Program - Individual
A study of solutions of systems of higher order partial differential equations by algebraic analysis methods and formula manipulation methods
用代数分析方法和公式处理方法研究高阶偏微分方程组的解
- 批准号:
26400110 - 财政年份:2014
- 资助金额:
$ 11.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2014
- 资助金额:
$ 11.9万 - 项目类别:
Discovery Grants Program - Individual