Singular Control of Diffusion Processes and its Applications to the Models of Economic Dynamics
扩散过程的奇异控制及其在经济动态模型中的应用
基本信息
- 批准号:0072388
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTSINGULAR CONTROL OF DIFFUSION PROCESSESAND ITS APPLICATIONS TO THE MODELS OF ECONOMIC DYNAMICSThe proposed research lies within the area of optimalstochastic control. It deals with optimal control ofdiffusion processes by means of singular with respectto time functionals. This type of control naturallyappears in the problems in which there is no naturalrestriction on the rates of control and as a resultthe optimal control rate is infinite. The optimalpolicy in these types of problems is to reflect theprocess from an a priori unknown boundary. Such typeof action also arises in problems with additive control,as an approximation for a "bang-bang" optimal policy.The proposed research consists of developing the theoryof the related Partial Differential Equations with gradientconstraints, studying optimal reflecting barriers andoptimal policies in one dimensional and multidimensionalcases. Applications include stochastic control modelsof flexible manufacturing systems as well as dividendoptimization and multidimensional portfolio optimizationmodels. It is also intended to consider application ofthe singular stochastic control theory to optimization problems in insurance. We will also study stochasticcontrol models of large economies and analysis of therelationship between the general framework of the noarbitrage asset pricing in mathematical finance and theequilibrium paths in those models.In addition to developing new stochastic control and stochasticprocesses theory, the applications of this research wouldinclude devising better models for optimization of themanufacturing processes and outputs. In addition our researchwould also result in developing new optimization modelsin mathematical finance and insurance. While perceived bymany nonspecialists as a tool for making a fast profit,mathematical finance in fact is a "technology" for riskreduction. In this regard its merge with insurance is onlytoo natural. The issues of controlling the risk as well asinsurance aspects of the financial risk has loomed largerecently in both financial markets as well as in the insuranceindustry. The importance of optimization in devise of thepolicies employed by insurance and financial institutionsis hard to overestimate. Exposure to unnecessary economic and financial risks and failure to employ the optimal proceduresmay have serious economic and social impacts. Our researchdeals with development of mathematical models of optimalrisk control techniques for financial and insurance corporations.This will also enable one to get a better insight into thenature of the optimal risk reduction techniques a publiclytraded financial corporation should adhere to, as well as theoptimal dividend distribution policy it should follow.
本文的研究属于最优随机控制的范畴。利用时间泛函的奇异性来研究扩散过程的最优控制问题。 这种类型的控制自然出现在对控制率没有自然限制的问题中,因此最优控制率是无限的。这类问题的最优策略是从一个先验未知的边界反映过程。 本文的研究内容包括发展相关的梯度约束偏微分方程理论,研究一维和多维情况下的最优反射障碍和最优策略。 应用包括柔性制造系统的随机控制模型以及股息优化和多维投资组合优化模型。本文还讨论了奇异随机控制理论在最优化中的应用 保险的问题。我们还将研究大型经济体的随机控制模型,并分析数理金融学中无套利资产定价的一般框架与这些模型中均衡路径之间的关系,除了发展新的随机控制和随机过程理论外,这项研究的应用还包括设计更好的模型来优化制造过程和产出。此外,我们的研究还将为数学金融和保险领域开发新的优化模型提供参考. 虽然被许多非专业人士视为快速获利的工具,但数理金融实际上是一种降低风险的“技术”。在这方面,它与保险的合并是再自然不过的了。控制风险的问题以及金融风险的保险方面最近在金融市场和保险业都显得很重要。保险和金融机构所采用的政策设计的优化的重要性很难被高估。暴露于不必要的经济和 金融风险和未能采用最佳程序可能会产生严重的经济和社会影响。我们的研究涉及金融和保险公司最优风险控制技术的数学模型的发展,这也将使人们能够更好地了解上市金融公司应该遵循的最优风险降低技术的性质,以及它应该遵循的最优股息分配政策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Taksar其他文献
Michael Taksar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Taksar', 18)}}的其他基金
Applications of Discrete and Continuous Time Stochastic Control to the Models of Economic Dynamics and Finance
离散和连续时间随机控制在经济动态和金融模型中的应用
- 批准号:
0505435 - 财政年份:2005
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Singular and Boundary Control of Multidimensional Diffusion
多维扩散的奇异和边界控制
- 批准号:
9705017 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular and Boundary Control of Multidimensional Diffusion Processes
数学科学:多维扩散过程的奇异和边界控制
- 批准号:
9301200 - 财政年份:1993
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Graduate Student Support for Singular Control of Stochastic Processes
研究生对随机过程奇异控制的支持
- 批准号:
8814919 - 财政年份:1989
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Theory and Control of Stochastic Processes
数学科学:随机过程的边界理论和控制
- 批准号:
8601510 - 财政年份:1986
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Research Initiation: Optimal Control of Diffusions With Unbounded Control Rates
研究启动:以无界控制率优化扩散控制
- 批准号:
8204540 - 财政年份:1982
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Active control of ion diffusion dynamics at the electrolyte/electrode interface by utilizing mixed anion surface
利用混合阴离子表面主动控制电解质/电极界面的离子扩散动力学
- 批准号:
23KK0104 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Pulmonary vascular control, diffusion capacity, and aging
肺血管控制、扩散能力和衰老
- 批准号:
573066-2022 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
University Undergraduate Student Research Awards
Spatially Resolved Coherent Control of Exciton Diffusion Using Multiple Ultrashort Pulses
使用多个超短脉冲对激子扩散进行空间分辨相干控制
- 批准号:
21H01888 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An ignition control method with optimizations of the composition of mixture and turbulence characteristics based on molecular diffusion characteristics
基于分子扩散特性优化混合气组成和湍流特性的点火控制方法
- 批准号:
20K04311 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Impact of pretreatment whole-tumor perfusion and diffusion parameters combined with glucose metabolism on local control for non-small cell lung cancer treated with stereotactic body radiotherapy
治疗前全瘤灌注和扩散参数联合糖代谢对非小细胞肺癌立体定向放疗局部控制的影响
- 批准号:
20K08098 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Diffusion Imaging for Management of Renal Cancer: Oncologic Control and Renal Functional Reserve - Resubmission - 1
用于肾癌治疗的先进扩散成像:肿瘤控制和肾功能储备 - 重新提交 - 1
- 批准号:
10380147 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Advanced Diffusion Imaging for Management of Renal Cancer: Oncologic Control and Renal Functional Reserve - Resubmission - 1
用于肾癌治疗的先进扩散成像:肿瘤控制和肾功能储备 - 重新提交 - 1
- 批准号:
10212354 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Construction of Information collection and diffusion system based on collaborative control among autonomous drones in disaster sites
基于灾害现场自主无人机协同控制的信息采集与传播系统构建
- 批准号:
20K11767 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of Photo-Induced Ion Diffusion Phenomena at Thin Film Interfaces and its Application to "Photochromic Batteries"
薄膜界面光致离子扩散现象的控制及其在“光致变色电池”中的应用
- 批准号:
20H02086 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Advanced Diffusion Imaging for Management of Renal Cancer: Oncologic Control and Renal Functional Reserve - Resubmission - 1
用于肾癌治疗的先进扩散成像:肿瘤控制和肾功能储备 - 重新提交 - 1
- 批准号:
10625960 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别: