Singular and Boundary Control of Multidimensional Diffusion
多维扩散的奇异和边界控制
基本信息
- 批准号:9705017
- 负责人:
- 金额:$ 14.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9705017 Taksar The proposed research lies within the area of optimal stochastic control. It deals with optimal control of diffusion processes by means of a free boundary as well as optimal control at a reflection boundary of the stochastic process. This type of control naturally appears in the problems in which there is no natural restriction on the rates of control and the optimal control rates are infinite. (This type of control model serves also as a good approximation for the situations when the rates are bounded but very large.) The optimal policy is then to reflect the process from an a priori unknown boundary. Natural models where such type of action arises are related to the problems with additive input, where there are no a priori limits on the control rates or as an approximation for the problems with optimal policy of a "bang-bang" type. The proposed research consists of developing the theory of the related PDE with gradient constraints, studying optimal reflecting barriers in multidimensional cases, and applying the results to different mechanical, manufacturing and financial models. This research should provide a sound theoretical base for developing optimal control algorithms for an automatic cruise control of a missile subject to uncertain wind conditions or a space vehicle subject to small perturbations in mechanical units. The developed technique will enable one to calculate the position when the maximal correction force should be applied as well as the optimal direction of this force. At the "ground level" this theory will give a tool to derive optimal inventory levels for complex flexible manufacturing systems as well as optimal timings for changes in the manufacturing processes. In the financial world this theory will provide a method for finding optimal levels of funds for financial companies whose assets are subject to random fluctuations. For example, in the case of a large insurance company whose liquid assets are constantly fluctuating due to uncertainty in the times and amounts of incoming claims, it will be possible to calculate the optimal level of the reserve which should be maintained in order to have the optimal balance between the risk and profit potential.
小行星9705017 建议的研究范围内的最优随机控制。 它 讨论了扩散过程的最优控制问题, 边界以及在反射边界处的最优控制, 随机过程 这种类型的控制自然会出现在 这是没有自然的限制率的控制和最佳的 控制率是无限的。(This一种控制模式也是一种良好的 近似的情况下,利率有界,但非常大)。 最优策略则是从先验未知数反映过程 边界这种类型的行动出现的自然模型与 添加剂输入的问题,其中没有先验限制, 控制率或作为一个近似的问题与最佳政策的 “砰砰”型的拟议的研究包括开发 相关的梯度约束偏微分方程的理论,研究了最优解 反映多维案例中的障碍,并将结果应用于 不同的机械、制造和金融模式。 本研究为开发新的生物技术提供了理论基础 导弹自动巡航控制的最优控制算法 受到不确定的风力条件或空间飞行器受到小的 机械单位的扰动。开发的技术将使人们能够 以计算最大校正力应该为 以及该力的最佳方向。在“基层” 这一理论将提供一个工具,以获得最佳库存水平的复杂 灵活的制造系统,以及最佳的时间变化, 制造过程。在金融界,这一理论将提供 一种为金融公司寻找最佳资金水平的方法, 资产是随机波动的。例如,在大型 流动资产不断波动的保险公司, 不确定性的时间和数额的传入索赔,这将是可能的 计算应维持的最佳储备水平, 以在风险和利润潜力之间取得最佳平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Taksar其他文献
Michael Taksar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Taksar', 18)}}的其他基金
Applications of Discrete and Continuous Time Stochastic Control to the Models of Economic Dynamics and Finance
离散和连续时间随机控制在经济动态和金融模型中的应用
- 批准号:
0505435 - 财政年份:2005
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Singular Control of Diffusion Processes and its Applications to the Models of Economic Dynamics
扩散过程的奇异控制及其在经济动态模型中的应用
- 批准号:
0072388 - 财政年份:2000
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Singular and Boundary Control of Multidimensional Diffusion Processes
数学科学:多维扩散过程的奇异和边界控制
- 批准号:
9301200 - 财政年份:1993
- 资助金额:
$ 14.1万 - 项目类别:
Continuing Grant
Graduate Student Support for Singular Control of Stochastic Processes
研究生对随机过程奇异控制的支持
- 批准号:
8814919 - 财政年份:1989
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Theory and Control of Stochastic Processes
数学科学:随机过程的边界理论和控制
- 批准号:
8601510 - 财政年份:1986
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Research Initiation: Optimal Control of Diffusions With Unbounded Control Rates
研究启动:以无界控制率优化扩散控制
- 批准号:
8204540 - 财政年份:1982
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Elucidation of the influence of twin boundary on Jc of REBCO coated conductors using twin boundary control method
使用孪晶界控制方法阐明孪晶界对 REBCO 涂层导体 Jc 的影响
- 批准号:
23K03929 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control for boundary segments of martensite structure for retarding hydrogen embrittlement
控制马氏体结构边界段以延缓氢脆
- 批准号:
23H01717 - 财政年份:2023
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A conserved control module for cleft-like tissue boundary formation in the vertebrate embryo
脊椎动物胚胎中裂隙样组织边界形成的保守控制模块
- 批准号:
RGPIN-2017-06667 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Boundary Control Towards Smart Water Management Systems
职业:智能水管理系统的边界控制
- 批准号:
2302030 - 财政年份:2022
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant
Synchronization control of hyperbolic equations with van der Pol boundary condition and its application to secure communication systems
范德波尔边界条件双曲方程同步控制及其在安全通信系统中的应用
- 批准号:
21K03370 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Wide-ranged turbulent flow control using singular pulsations appearing in the gas-liquid multiphase turbulent boundary layer
利用气液多相湍流边界层中出现的奇异脉动进行宽范围湍流控制
- 批准号:
21K14069 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Control of grain boundary segregation in ferrous alloys using interaction between solute elements
利用溶质元素之间的相互作用控制铁合金中的晶界偏析
- 批准号:
21K14433 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A conserved control module for cleft-like tissue boundary formation in the vertebrate embryo
脊椎动物胚胎中裂隙样组织边界形成的保守控制模块
- 批准号:
RGPIN-2017-06667 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Discovery Grants Program - Individual
Smart control of gas-liquid two-phase turbulent boundary layers for frictional drag reduction
智能控制气液两相湍流边界层以减少摩擦阻力
- 批准号:
21H04538 - 财政年份:2021
- 资助金额:
$ 14.1万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: How fast do tidewater glaciers melt? Quantifying the processes that control boundary layer transport across the ice-ocean interface
合作研究:潮水冰川融化的速度有多快?
- 批准号:
2023319 - 财政年份:2020
- 资助金额:
$ 14.1万 - 项目类别:
Standard Grant