Analytical and Computational Studies of Boundary Value Problems for PDE's. Direct and Inverse Problems

偏微分方程边值问题的分析和计算研究。

基本信息

  • 批准号:
    0072556
  • 负责人:
  • 金额:
    $ 14.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

NSF Award Abstract - DMS-0072556Mathematical Sciences: Analytical and Computational Studies of Boundary Value Problems for Partial Differential Equations: Direct and Inverse ProblemsAbstract0072556 VogeliusThis project uses a mixture of analytical and computational techniques to carry out modeling and nondestructive inspection for various problems of continuum mechanics. The research investigates the use of magnetic as well as electric data to identify small objects (or defects) inside an otherwise known medium. The qualitative and quantitative behavior of solutions to nonlinear boundary value problems that arise in connection with corrosion modeling is also investigated. The goal is to develop imaging techniques that permit effective assessment of (inaccessible) corrosion damage. Optimization of the imposed currents for electrodeposition is also under study. The work on inverse problems includes a study of the identifiability of nonlinear current densities that appear in semilinear boundary value problems related to magnetohydrodynamics. Work will continue on characterization of the (effective) boundary layer behavior encountered in composite materials; the focus will first be on polygonal domains with irrational slopes, but it is expected that the techniques developed there will ultimately lead to a deeper understanding of boundary layers for arbitrary domains. Another important activity will be the study of the qualitative and quantitative behavior of stresses in (laminated or fiber-reinforced) composites with extremely close interfaces. One goal of this research is to significantly increase the effectiveness of electric and electromagnetic imaging techniques by incorporating into the mathematical algorithms information about the behavior of the associated fields in the presence of various defects and inhomogeneities. Examples of such defects and inhomogeneities range from cracks in a mechanical component, or corrosion spots inside a pipe, all the way to anti-personnel mines buried in a field. The second main area of research is study of composite materials, which, through its emphasis on stress concentrations and boundary layers, is expected to lead to a better understanding of the relationship between microscopic phenomena and macroscopic failures.
数学科学:偏微分方程边值问题的解析与计算研究:正问题与反问题[Abstract] 0072556 vogelius本项目采用分析与计算相结合的方法,对连续介质力学的各种问题进行建模和无损检测。这项研究调查了利用磁和电数据来识别已知介质中的小物体(或缺陷)。本文还研究了与腐蚀建模有关的非线性边值问题解的定性和定量行为。目标是开发成像技术,以有效评估(难以接近的)腐蚀损伤。电沉积施加电流的优化也在研究中。反问题的工作包括研究出现在与磁流体力学有关的半线性边值问题中的非线性电流密度的可辨识性。在复合材料中遇到的(有效)边界层行为的表征工作将继续进行;重点将首先放在具有非理性斜率的多边形域上,但预计在那里开发的技术最终将导致对任意域的边界层有更深入的理解。另一项重要活动将是研究具有极紧密界面的(层压或纤维增强)复合材料的定性和定量应力行为。本研究的一个目标是通过将有关存在各种缺陷和不均匀性的相关场的行为的信息纳入数学算法来显着提高电和电磁成像技术的有效性。这种缺陷和不均匀性的例子从机械部件的裂缝,或管道内的腐蚀点,一直到埋在野外的杀伤人员地雷。第二个主要研究领域是复合材料的研究,它通过强调应力集中和边界层,有望更好地理解微观现象和宏观失效之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Vogelius其他文献

Inverse Problems for Partial Differential Equations
  • DOI:
    10.1007/0-387-32183-7
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Vogelius
  • 通讯作者:
    Michael Vogelius
Imagerie électromagnétique de petites inhomogénéités
小异同源电磁图像
  • DOI:
    10.1051/proc:072204
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yves Capdeboscq;Michael Vogelius
  • 通讯作者:
    Michael Vogelius
Crack determination from boundary measurements—Reconstruction using experimental data
  • DOI:
    10.1007/bf00567084
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Valdis Liepa;Fadil Santosa;Michael Vogelius
  • 通讯作者:
    Michael Vogelius

Michael Vogelius的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Vogelius', 18)}}的其他基金

Electromagnetic Signatures of Inhomogeneities: Visibility vs. Invisibility
不均匀性的电磁特征:可见性与不可见性
  • 批准号:
    2205912
  • 财政年份:
    2022
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Inverse Problems for Partial Differential Equations
偏微分方程的反问题
  • 批准号:
    1211330
  • 财政年份:
    2012
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Analytical and computational studies of direct and inverse boundary value problems for PDEs
偏微分方程正向和逆边值问题的分析和计算研究
  • 批准号:
    0307119
  • 财政年份:
    2003
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Boundary Layers, Interfaces and Defects in Composite Media
美法合作研究:复合介质中的边界层、界面和缺陷
  • 批准号:
    0003788
  • 财政年份:
    2001
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Numerical and Analytical Studies of Boundary Value Problems for PDE's. Direct and Inverse Problems
偏微分方程边值问题的数值和分析研究。
  • 批准号:
    9704575
  • 财政年份:
    1997
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analytical & Numerical Aspects of Inverse Problems for Differential Equations
数学科学:分析
  • 批准号:
    9202042
  • 财政年份:
    1992
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Analytical and Numerical Aspects of Inverse Problems for Differential Equations
数学科学:微分方程反问题的分析和数值方面
  • 批准号:
    8902532
  • 财政年份:
    1989
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Rapid Variations in Elliptic Equations. Homogenization and Relaxation
数学科学:椭圆方程的快速变化。
  • 批准号:
    8601490
  • 财政年份:
    1986
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Experimental and Computational Studies of Biomolecular Topology
职业:生物分子拓扑的实验和计算研究
  • 批准号:
    2336744
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Continuing Grant
Computational Studies of Ambient Catalytic Dinitrogen Reduction by Electropositive Metal Tetraphenolate Complexes
正电金属四酚盐配合物环境催化二氮还原的计算研究
  • 批准号:
    EP/X042049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Research Grant
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Studentship
Computational studies of P-type ATPase ion pumps
P型ATP酶离子泵的计算研究
  • 批准号:
    2309048
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Computational Studies of Solid Electrolytes
固体电解质的计算研究
  • 批准号:
    2242959
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Computational Studies of Selective C-H Functionalization Reactions
选择性 C-H 官能化反应的计算研究
  • 批准号:
    2247505
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
Pioneering Theoretical and Computational Studies for Elucidating Dynamic Disorder in Condensed-Phase Dynamics
阐明凝聚相动力学中动态无序的开创性理论和计算研究
  • 批准号:
    23K17361
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Computational and Experimental Studies Towards Ideal Organic Semiconductors for Perovskite Solar Cells
用于钙钛矿太阳能电池的理想有机半导体的计算和实验研究
  • 批准号:
    2308895
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
COMPUTATIONAL STUDIES OF MAIN GROUP CLUSTERS AS CATALYSTS IN ORGANIC SYNTHESIS
主族簇作为有机合成催化剂的计算研究
  • 批准号:
    2905622
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Studentship
Computational Studies to Improve Understanding and Outcomes of Covalent Labeling Mass Spectrometry Measurements
提高对共价标记质谱测量的理解和结果的计算研究
  • 批准号:
    2247002
  • 财政年份:
    2023
  • 资助金额:
    $ 14.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了