Mathematical Descriptions of Anisotropic Fluids and Optical Pulse Propagation
各向异性流体和光脉冲传播的数学描述
基本信息
- 批准号:0072553
- 负责人:
- 金额:$ 7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-01 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NSF Award Abstract - DMS-0072553Mathematical Sciences: Mathematical Descriptions of Anisotropic Fluids and Optical Pulse PropagationAbstract0072553 ForestThe research project on anisotropic fluids investigates critical mathematical problems arising in the flow of macromolecular fluids such as liquid crystal polymers. We analyze the tensorial partial differential equations that describe the flows of macromolecules to construct orientation patterns and determine their stability. These analyses yield information about flow-induced phase transitions and models for orientation patterns routinely observed in experiments and manufacturing processes. The research project on optical pulse propagation employs methods of integrable systems in the analysis of pulse propagation in nonlinear optical fibers. The governing model equations are perturbations of scalar or coupled nonlinear Schrodinger equations with small dispersion. The research extends previous results on scalar equations to systems, studies new instability phenomena that arise from the coupling, constructs explicit solutions that serve as models for pulse propagation, and predicts the onset and fate of pulse degradation as a function of fiber properties and of pulse shape and power. The proposed research focuses on mathematical issues central to two important technologies: high-performance materials and optical fiber communications. Many super-strong materials are produced from liquids comprised of large molecules whose shape and dynamics constrain manufacturing processes and are responsible for material properties. This research develops mathematical models for the interaction of flow and microstructure, applies these models to explain observed patterns and their relation to material properties, and analyzes other phenomena that affect processing behavior and properties of materials. Long-haul optical fiber communications systems are well-described by special nonlinear differential equations that are amenable to analysis with recently-developed mathematical methods. Observations show that light pulses in optical fibers degrade through ripples that emerge on the pulse, and this phenomenon is also seen in computer simulations. This project develops rigorous mathematical understanding of why ripples form and an explicit algorithm that predicts pulse degradation given the properties of the fiber and the input pulse. This tool will be useful to design optimal pulse shapes for given optical fibers.
数学科学:各向异性流体和光脉冲传播的数学描述[Abstract] [0072553 forest]各向异性流体研究项目研究液晶聚合物等大分子流体流动中出现的关键数学问题。我们分析描述大分子流动的张量偏微分方程来构建取向模式并确定其稳定性。这些分析提供了关于流动诱导相变的信息,以及在实验和制造过程中经常观察到的取向模式模型。光脉冲传播研究项目采用可积系统的方法分析脉冲在非线性光纤中的传播。控制模型方程是小色散的标量扰动或耦合非线性薛定谔方程。该研究将以往关于标量方程的结果扩展到系统,研究了由耦合引起的新的不稳定现象,构建了作为脉冲传播模型的显式解,并预测了脉冲退化的开始和结局,作为光纤特性和脉冲形状和功率的函数。提出的研究重点是两个重要技术的核心数学问题:高性能材料和光纤通信。许多超强材料是由大分子组成的液体生产的,这些大分子的形状和动力学限制了制造过程,并决定了材料的性能。本研究开发了流动和微观结构相互作用的数学模型,应用这些模型来解释观察到的模式及其与材料性能的关系,并分析影响材料加工行为和性能的其他现象。长途光纤通信系统可以用特殊的非线性微分方程很好地描述,这些方程可以用最新发展的数学方法进行分析。观察表明,光纤中的光脉冲通过脉冲上出现的波纹而衰减,这一现象在计算机模拟中也可以看到。该项目对波纹形成的原因进行了严格的数学理解,并给出了一个明确的算法,可以根据光纤和输入脉冲的特性预测脉冲退化。该工具将有助于为给定的光纤设计最佳脉冲形状。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M Forest其他文献
Testicular response to hCG in the immature lamb
未成熟羔羊对人绒毛膜促性腺激素的睾丸反应
- DOI:
10.1203/00006450-198101000-00060 - 发表时间:
1981-01-01 - 期刊:
- 影响因子:3.100
- 作者:
J R Ducharme;R Hamel;C Polychronakos;M Forest;F Haour;G Charpenet;W Gibb;R Collu - 通讯作者:
R Collu
M Forest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M Forest', 18)}}的其他基金
RAPID: A Lung Mucus Strategy for COVID-19 Viral Protection
RAPID:针对 COVID-19 病毒防护的肺粘液策略
- 批准号:
2028758 - 财政年份:2020
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
- 批准号:
1929298 - 财政年份:2020
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: Computational Modeling of How Living Cells Utilize Liquid-Liquid Phase Separation to Organize Chemical Compartments
合作研究:活细胞如何利用液-液相分离来组织化学区室的计算模型
- 批准号:
1816630 - 财政年份:2018
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
- 批准号:
1638521 - 财政年份:2017
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Collaborative Research: Kinetic to Continuum Modeling of Active Anisotropic Fluids
合作研究:活性各向异性流体的动力学到连续体建模
- 批准号:
1517274 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
A Mathematical-Experimental Strategy to Discern the Molecular Basis of "Successful Mucus"
辨别“成功粘液”分子基础的数学实验策略
- 批准号:
1462992 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Collaborative Research: A Molecular-to-Continuum, Data-Driven Strategy for Mucus Transport Modeling
协作研究:粘液运输建模的分子到连续体、数据驱动策略
- 批准号:
1412844 - 财政年份:2014
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research on Mathematical Constructs for Multiphase Complex Fluids
多相复杂流体数学结构的合作研究
- 批准号:
0908423 - 财政年份:2009
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: Collaborative Proposal for Mathematics & Computation of Nano-Composite Flows & Properties
合作研究:数学合作提案
- 批准号:
0604891 - 财政年份:2006
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Multi-scale Phenomena in Macromolecular Fluids and Nano-Composite Materials
高分子流体和纳米复合材料的多尺度现象
- 批准号:
0308019 - 财政年份:2003
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
DMS/NIGMS 1: Viscoelasticity and Flow of Biological Condensates via Continuum Descriptions - How Droplets Coalesce and Wet Cellular Surfaces
DMS/NIGMS 1:通过连续体描述的生物凝聚物的粘弹性和流动 - 液滴如何聚结和润湿细胞表面
- 批准号:
2245850 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant
Textual research on the reorganization of mythological-historical descriptions and their social phases in the early Heian period
平安初期神话历史记述及其社会阶段的整理考证
- 批准号:
23K18690 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Disentangling gender and racial myths from clinical descriptions of female prevalent symptoms
从女性普遍症状的临床描述中解开性别和种族神话
- 批准号:
ES/Y007816/1 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Fellowship
Novel application of computational approaches in addressing problematic terminology and descriptions within V&A Museum catalogues
计算方法在解决 V 内有问题的术语和描述方面的新颖应用
- 批准号:
2784579 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Studentship
Object Recognition by using Deep Neural Networks for Graph Stractured Descriptions of Image Features and Aspect Views
使用深度神经网络进行图像特征和方面视图的图结构化描述的对象识别
- 批准号:
23K11175 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Detail descriptions on structure and variations of the "Kuroshio" currents around the Izu-Ogasawara rdige
伊豆小笠原海脊周围“黑潮”流的结构和变化的详细描述
- 批准号:
22H01301 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Natural language generation of trend descriptions for pedagogic purposes
用于教学目的的自然语言生成趋势描述
- 批准号:
22K00792 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Resonant Hartree-Fock Inspired Descriptions of Excited State Processes
职业生涯:共振 Hartree-Fock 启发的激发态过程描述
- 批准号:
2144905 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Effective Descriptions of Quantum Gravity and Cosmology
量子引力和宇宙学的有效描述
- 批准号:
2206591 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Continuing Grant