Classical Topology Inside Quantum Invariants

量子不变量中的经典拓扑

基本信息

  • 批准号:
    0072857
  • 负责人:
  • 金额:
    $ 6.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2001-02-28
  • 项目状态:
    已结题

项目摘要

Proposal: 0072857An important problem of the 3d topology is how to establish a relation between the old "classical" invariants of 3-manifold and knots such as the Casson-Walker invariant and the Alexander polynomial, and the new "quantum" invariants such as the Reshetikhin-Turaev invariant and the Jones polynomial. The existing evidence suggests that quantum invariants can be disassembled into simpler pieces, the first of which are known classical invariants, whereas the others are their close cousins which may also have a nice direct interpretation in the framework of classical topology. The invariants that appear in the decomposition of quantum invariants, are the so-called Vassiliev or finite type invariants. Therefore it turns out that Vassiliev invariants are a link between the quantum and classical invariants. I propose to study the properties of Vassiliev invariants appearing in the decomposition of quantum invariants and especially their relation to classical topology. In particular, I propose to study the new polynomial Vassiliev invariants that are hidden inside the colored Jones polynomials. These new polynomial invariants of knots and links seem to be the descendants of the Alexander polynomial and therefore, similarly to their ancestor, they may have a direct topological interpretation. The first direct descendant of the Alexander polynomial is a 2-variable polynomial with integer coefficients. Path integral arguments suggest that it is a knot analog of the Casson-Walker invariant of rational homology spheres.The topological classification of 3-manifolds and knots is still an open problem. A natural way to approach it is to construct as many invariants of knots and 3-manifolds as one would need in order to distinguish between any non-equivalent objects. In recent years we witnessed an outburst of new "quantum" invariants (Jones polynomial and Reshetikhin-Turaev invariant in particular). These invariants are more powerful than the old Alexander polynomial, yet they are relatively easy to compute. However, their application towards the solution of topological problems is impeded by the fact that their definition is purely combinatorial and has no obvious connection to the well-established methods of classical topology. Existing evidence suggests that quantum invariants are packed up with an infinite number of simpler invariants the first of which are well-known classical invariants. Therefore a study of quantum invariants (especially in the semi-classical approximation when they unpack) may produce an infinite number of new classical invariants which may be enough to distinguish all 3-manifolds and knots. I propose to study the properties of new simple invariants that come from the quantum ones. In particular, I will study the decomposition of the colored Jones polynomial into an infinite sequence of simpler polynomials which seem to be the descendants of the Alexander polynomial.
提案:0072857三维拓扑学的一个重要问题是如何在三维流形和纽结的旧的“经典”不变量(如Casson-Walker不变量和Alexander多项式)和新的“量子”不变量(如Reshetikhin-Turaev不变量和Jones多项式)之间建立关系。现有的证据表明,量子不变量可以分解成更简单的片段,其中第一个是已知的经典不变量,而其他的是它们的近亲,在经典拓扑学的框架下也可能有一个很好的直接解释。出现在量子不变量分解中的不变量是所谓的Vassiliev或有限类型不变量。因此,瓦西里耶夫不变量是连接量子不变量和经典不变量的纽带。我建议研究量子不变量分解中出现的Vassiliev不变量的性质,特别是它们与经典拓扑学的关系。特别是,我建议研究隐藏在有色Jones多项式中的新的多项式Vassiliev不变量。纽结和链环的这些新的多项式不变量似乎是亚历山大多项式的后代,因此,与它们的祖先类似,它们可能具有直接的拓扑解释。亚历山大多项式的第一个直系后代是具有整数系数的二元多项式。路径积分论证表明它是有理同调球的Casson-Walker不变量的纽结模拟,三维流形和纽结的拓扑分类仍然是一个开放的问题。一种自然的方法是构造尽可能多的纽结和3-流形的不变量,以区分任何不等价的对象。近年来,我们目睹了新的“量子”不变量的爆发(特别是琼斯多项式和Reshetikhin-Turaev不变量)。这些不变量比旧的Alexander多项式更强大,但它们相对容易计算。然而,它们的定义纯粹是组合的,与经典拓扑学中成熟的方法没有明显的联系,这阻碍了它们在解决拓扑问题中的应用。现有的证据表明,量子不变量是由无数个更简单的不变量组成的,其中第一个是众所周知的经典不变量。因此,对量子不变量的研究(特别是在半经典近似下,当它们展开时)可能会产生无限数量的新经典不变量,这可能足以区分所有的3-流形和纽结。我建议研究来自量子不变量的新的简单不变量的性质。特别是,我将研究有色琼斯多项式的分解成更简单的多项式的无限序列,这些更简单的多项式似乎是亚历山大多项式的后代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lev Rozansky其他文献

Lev Rozansky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lev Rozansky', 18)}}的其他基金

FRG: Collaborative Research: Algebra and Geometry Behind Link Homology
FRG:协作研究:链接同调背后的代数和几何
  • 批准号:
    1760578
  • 财政年份:
    2018
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Categorification and Double Categorification of Quantum Topological Invariants of Links and 3-Manifolds
连杆和3-流形的量子拓扑不变量的分类和双分类
  • 批准号:
    1108727
  • 财政年份:
    2011
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Categorification and Topological Quantum Field Theories
分类和拓扑量子场论
  • 批准号:
    0808974
  • 财政年份:
    2008
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
A Quantum Field Theory Approach to the Study of Low-dimensional Topology Invaraints and their Categorification
研究低维拓扑不变量及其分类的量子场论方法
  • 批准号:
    0509793
  • 财政年份:
    2005
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    0196235
  • 财政年份:
    2000
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Classical Topology Inside Quantum Invariants
量子不变量中的经典拓扑
  • 批准号:
    0196131
  • 财政年份:
    2000
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9996368
  • 财政年份:
    1998
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9704893
  • 财政年份:
    1997
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
  • 批准号:
    2341204
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
  • 批准号:
    2300172
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
  • 批准号:
    2405405
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
  • 批准号:
    DP240101084
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Discovery Projects
Algorithmic topology in low dimensions
低维算法拓扑
  • 批准号:
    EP/Y004256/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了