Categorification and Topological Quantum Field Theories
分类和拓扑量子场论
基本信息
- 批准号:0808974
- 负责人:
- 金额:$ 14.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-15 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most important developments in 3-dimensional topology over the last 25 years was the discovery of the so-called quantum invariants of links and 3-manifolds such as the Jones, HOMFLYPT and Kauffman polynomials and the Reshetikhin-Turaev invariants. These invariants were described combinatorially, their relation to classical 3-dimensional topology was mysterious, and the only conceptual explanation for their existence came from physics: Witten constructed a family of topological quantum field theories, whose path integral partition functions were conjectured to coincide with quantum invariants. Recently, Khovanov, Ozsvath ans Szabo discovered the categorification of polynomial link invariants: to a link one associates a chain complex of graded vector spaces, whose graded Euler characteristic coincides with a given polynomial invariant. Also, to a cobordism between two links one associates a chain map between the link categorification complexes. Most of the known categorification constructions are either combinatorial or `semi-combinatorial' and their intrinsic 3-dimensional origin remains mysterious. The goal of this proposal is to extend the categorification to a wider class of link polynomial invariants and, more importantly, to the Reshetikhin-Turaev invariants of 3-manifolds. Rozansky suggests two approaches to this problem. First, he intends to use combinatorial methods based upon commutative algebra (matrix factorizations) and upon the topology of virtual links. These methods have shown promise in the categorification of the HOMFLYPT and SO(2N) Kauffman polynomials. The second approach is based on the methods of quantum field theory. Categorification implies that Witten's Chern-Simons theory is a dimensional reduction of a yet unknown 4-dimensional theory. The candidate theories were considered in the papers of Gukov, Kapustin and Witten, but the correct theory has not been found yet. A construction of this topological quantum field theory may lead to combinatorial categorification constructions for link and manifold invariants. It should also provide a conceptual explanation for the existence of cobordism invariants. 3-dimensional topology deals with classification of knots, links and 3-dimensional surfaces. The main approach to this problem is to construct topological invariants, that is, the numbers or polynomials that can be assigned to a topological object, computed readily from its presentation (say, from the picture of a knot) and used to distinguish these objects. A major breakthrough it 3-dimensional topology came about 25 years ago with the discovery of a wide variety of the so-called quantum invariants.Surprisingly, these invariants were rooted in physics: they come from a special kind of a 3-dimensional quantum field theory. Thus quantum invariants provide an important bridge between topology and advanced physical theories. A more recent development came in the form of categorification: it turned out that quantum invariants were just dimensions of special vector spaces associated with topological objects. From the physics point of view, this means that the 3-dimensional quantum field theory describing quantum invariants is the dimensional reduction of the yet unknown 4-dimensional theory (the idea of dimensional reduction is familiar in string theory which requires a 9-dimensional space, 6 extra dimensions being wrapped up tightly in order to make them invisible for a general observer). Rozansky proposes to search for the 4-dimensional physical theory related to categorification and to use the topology-physics relation in order to get a better understanding of both fields of science.
过去 25 年中 3 维拓扑最重要的发展之一是发现了所谓的链路和 3 流形的量子不变量,例如 Jones、HOMFLYPT 和 Kauffman 多项式以及 Reshetikhin-Turaev 不变量。这些不变量是组合描述的,它们与经典三维拓扑的关系是神秘的,它们存在的唯一概念解释来自物理学:威滕构建了一系列拓扑量子场论,其路径积分配分函数被推测与量子不变量一致。最近,Khovanov、Ozsvath ans Szabo 发现了多项式链接不变量的分类:将一个链接与分级向量空间的链复形相关联,其分级欧拉特征与给定的多项式不变量一致。此外,对于两个链接之间的协同关系,可以将链接分类复合体之间的链图关联起来。大多数已知的分类结构要么是组合的,要么是“半组合的”,并且它们内在的 3 维起源仍然是神秘的。该提案的目标是将分类扩展到更广泛的链接多项式不变量类别,更重要的是,扩展到 3 流形的 Reshetikhin-Turaev 不变量。罗赞斯基提出了解决这个问题的两种方法。首先,他打算使用基于交换代数(矩阵分解)和虚拟链路拓扑的组合方法。这些方法在 HOMFLYPT 和 SO(2N) Kauffman 多项式的分类中显示出了前景。第二种方法基于量子场论的方法。分类意味着威滕的陈-西蒙斯理论是未知的 4 维理论的降维。 Gukov、Kapustin 和 Witten 的论文中考虑了候选理论,但尚未找到正确的理论。这种拓扑量子场论的构造可能会导致链接和流形不变量的组合分类构造。它还应该为协边不变量的存在提供概念解释。 3 维拓扑涉及结、链接和 3 维表面的分类。解决这个问题的主要方法是构造拓扑不变量,即可以分配给拓扑对象的数字或多项式,可以根据拓扑对象的表示(例如,从结的图片)轻松计算并用于区分这些对象。大约 25 年前,随着各种所谓的量子不变量的发现,3 维拓扑出现了重大突破。令人惊讶的是,这些不变量植根于物理学:它们来自一种特殊的 3 维量子场论。因此,量子不变量在拓扑学和先进物理理论之间提供了一座重要的桥梁。最近的发展以分类的形式出现:事实证明,量子不变量只是与拓扑对象相关的特殊向量空间的维度。从物理学的角度来看,这意味着描述量子不变量的3维量子场论是未知的4维理论的降维(降维的想法在弦理论中很常见,弦理论需要9维空间,6个额外维度被紧紧包裹起来,以使它们对一般观察者来说是不可见的)。罗赞斯基建议寻找与分类相关的4维物理理论,并利用拓扑-物理关系,以便更好地理解这两个科学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lev Rozansky其他文献
Lev Rozansky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lev Rozansky', 18)}}的其他基金
FRG: Collaborative Research: Algebra and Geometry Behind Link Homology
FRG:协作研究:链接同调背后的代数和几何
- 批准号:
1760578 - 财政年份:2018
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
Categorification and Double Categorification of Quantum Topological Invariants of Links and 3-Manifolds
连杆和3-流形的量子拓扑不变量的分类和双分类
- 批准号:
1108727 - 财政年份:2011
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
A Quantum Field Theory Approach to the Study of Low-dimensional Topology Invaraints and their Categorification
研究低维拓扑不变量及其分类的量子场论方法
- 批准号:
0509793 - 财政年份:2005
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
0196235 - 财政年份:2000
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
Classical Topology Inside Quantum Invariants
量子不变量中的经典拓扑
- 批准号:
0196131 - 财政年份:2000
- 资助金额:
$ 14.46万 - 项目类别:
Continuing Grant
Classical Topology Inside Quantum Invariants
量子不变量中的经典拓扑
- 批准号:
0072857 - 财政年份:2000
- 资助金额:
$ 14.46万 - 项目类别:
Continuing Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
9996368 - 财政年份:1998
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
9704893 - 财政年份:1997
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
- 批准号:
2339309 - 财政年份:2024
- 资助金额:
$ 14.46万 - 项目类别:
Continuing Grant
Topological quantum matter and crystalline symmetry
拓扑量子物质和晶体对称性
- 批准号:
2345644 - 财政年份:2024
- 资助金额:
$ 14.46万 - 项目类别:
Continuing Grant
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
- 批准号:
24K16999 - 财政年份:2024
- 资助金额:
$ 14.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Control of topological quantum fields by a Moire metasurface
通过莫尔超表面控制拓扑量子场
- 批准号:
23K04567 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum transport study of axion dynamics in magnetic topological systems
磁拓扑系统中轴子动力学的量子输运研究
- 批准号:
22KF0111 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Conference: ICMS: Topological Quantum Computing
会议:ICMS:拓扑量子计算
- 批准号:
2327208 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
- 批准号:
2889795 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Studentship
Microscopy and Spectroscopy of Topological Quantum Devices
拓扑量子器件的显微镜和光谱学
- 批准号:
2892548 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Studentship
Dynamical topological phases in monitored quantum circuits
受监控量子电路中的动态拓扑相
- 批准号:
2892177 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Studentship














{{item.name}}会员




