VLSI Arithmetic Logic Schemes and Low-Power High-Performance Circuits for Parallel and Reconfigurable Computations

用于并行和可重构计算的 VLSI 算术逻辑方案和低功耗高性能电路

基本信息

  • 批准号:
    0073469
  • 负责人:
  • 金额:
    $ 13.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

Proposal: CCR 0073469Title: New VLSI Arithmetic Logic Schemes and Low-Power High-Performance CircuitsFor Parallel and Reconfigurable ComputationsPI: Rong LinABSTRACTThis research investigates several basic parallel and reconfigurable arithmetic and elementary functional unit designs, architectures and algorithms. Recently developed non-binary VLSI shift switch logic schemes and low-power high-performance circuits are used for the study. A set of application specific processors, using the novel logic and the building-block circuits, has demonstrated superiority in VLSI design, which includes high-speed large-size array multipliers, reconfigurable inner product processors and reconfigurable matrix multipliers. Development of a dynamically reconfigurable platform for all of these computations is a major target of this project. The new logic schemes primarily employ shift switch parallel counter units as logic operators, and 4-bit digital signals, representing values ranging from 0 to 3, as logic operands, where only 2-out-of-4 signal bits are subject to value-change at any logic stage in the worst case. This is used to simplify the circuit designs and to reduce the power-dissipation. The main focus of this research is to further explore the properties and advantages of the logic schemes and circuits, and to develop superior applications for parallel and reconfigurable computations. A significant impact on the next generation of microprocessors and SOC designs is expected.
提案:本文研究了几种基本的并行和可重构运算和基本功能单元的设计、结构和算法。最近开发的非二进制VLSI移位开关逻辑方案和低功耗高性能电路用于研究。一组应用专用处理器,使用新的逻辑和积木式电路,已显示出优越的超大规模集成电路设计,其中包括高速大规模阵列乘法器,可重构内积处理器和可重构矩阵乘法器。为所有这些计算开发一个动态可重构的平台是这个项目的主要目标。新的逻辑方案主要采用移位开关并行计数器单元作为逻辑运算器,并采用4位数字信号作为逻辑操作数,表示范围从0到3的值,其中在最坏情况下,在任何逻辑级只有4个信号位中的2个发生值变化。这是用来简化电路设计和降低功耗。本研究的主要目的是进一步探讨这些逻辑架构与电路的特性与优势,并开发出并行与可重构计算的上级应用。预计将对下一代微处理器和SOC设计产生重大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Lin其他文献

Watching Videos of Colonoscopies and Receiving Interpretations Reduce Pain and Anxiety While Increasing the Satisfaction of Patients
观看结肠镜检查视频和接受解释可以减少疼痛和焦虑,同时提高患者的满意度
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Li;Chaoqun Han;Chi Nie;Tao Xu;Kun Zhang;Xuan;Xin;Rong Lin;Zhen Ding
  • 通讯作者:
    Zhen Ding
Solubility of naringin in ethanol and water mixtures from 283.15 to 318.15K
柚皮苷在乙醇和水混合物中的溶解度从 283.15 到 318.15K
  • DOI:
    10.1016/j.molliq.2014.12.039
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Rong Lin;Guangde Yang;Weirong Wang;Yiping Li
  • 通讯作者:
    Yiping Li
A meta-analytic evaluation of cholesteryl ester transfer protein (CETP) C-629A polymorphism in association with coronary heart disease risk and lipid changes
胆固醇酯转移蛋白 (CETP) C-629A 多态性与冠心病风险和血脂变化相关的荟萃分析评估
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shouwei Lin;Ruo;Rong Lin
  • 通讯作者:
    Rong Lin
Observation of the modulation instability and frequency-doubling in self-defocusing crystal
自散焦晶体调制不稳定性和倍频的观察
  • DOI:
    10.1016/j.physleta.2011.07.007
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Lin;Yuanmei Gao
  • 通讯作者:
    Yuanmei Gao
Immune checkpoints signature-based risk stratification for prognosis of patients with gastric cancer
  • DOI:
    doi: 10.1016/j.cellsig.2023.110976
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
  • 作者:
    Zenghong Wu;Gangping Li;Weijun Wang;Kun Zhang;Mengke Fan;Yu Jin;Rong Lin
  • 通讯作者:
    Rong Lin

Rong Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Lin', 18)}}的其他基金

Reconfigurable Architectures with Shift Switching for Novel Parallel Arithmetic Schemes
用于新型并行算术方案的具有移位切换的可重构架构
  • 批准号:
    9630870
  • 财政年份:
    1996
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Standard Grant
RUI: A New Switching Mechanism for Reconfigurable Bus System Architectures and Algorithms
RUI:可重构总线系统架构和算法的新型切换机制
  • 批准号:
    9307664
  • 财政年份:
    1993
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Continuing Grant
Arithmetic Structure in Dense Sets
稠密集中的算术结构
  • 批准号:
    2401117
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Continuing Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Continuing Grant
Arithmetic of Thin Groups and Isogeny-Based Cryptography
稀疏群算法和基于同源的密码学
  • 批准号:
    2401580
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Continuing Grant
Conference: Visions in Arithmetic and Beyond
会议:算术及其他领域的愿景
  • 批准号:
    2402436
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Standard Grant
Groups and Arithmetic
群与算术
  • 批准号:
    2401098
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Continuing Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 13.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了