Collaborative Research: Sequential Monte Carlo Methods and Their Applications

合作研究:序贯蒙特卡罗方法及其应用

基本信息

  • 批准号:
    0073601
  • 负责人:
  • 金额:
    $ 20.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-15 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Sequential Monte Carlo Methods and Their ApplicationsJun Liu, Harvard University Rong Chen, Univ. Illinois at ChicagoXiaodong Wang, Texas A&M UniversityAbstract (Technical):Sequential Monte Carlo (SMC) methodology recently emerged in statistics and engineering fields promises to solve a wide class of nonlinear filtering and optimization problems, opening up new frontiers for cross-fertilization between statistics and many areas of applications. A distinctive feature of SMC is its ability to adapt to the dynamics of the underlying stochastic systems via recursive simulation of the variables involved. Although special forms of SMC date back to 1950s, the general use of the method appeared only recently and its many key properties have yet been well understood. This research group will focus on three major theoretical issues regarding the design of effective SMC-based computational tools and three important application areas, namely, wireless communications, computational biology, and business data analysis. In the theory part, they will study approaches of generating better Monte Carlo samples for tracking system dynamics; investigate roles of resampling which is critical to the effectiveness of SMC; and propose system reconfiguration strategies for more efficient SMC algorithms. In the application part, they plan to design novel signal processing and network control algorithms for wireless multimedia communications; develop better multiple sequence alignment models and SMC-based optimization method for protein structures; and build SMC-based modeling and analysis tools for business data. It is anticipated that the proposed research will culminate in the formulation of novel SMC methodologies and will bring the promise of the SMC paradigm into the practical arena of many emerging applications.Stochastic dynamic systems are routinely used in many application fields such as automatic control, engineering, and finance. The statistical analyses of these systems are crucial. However, except for a few special cases, quantitative analyses of these systems still present major challenges to researchers. Sequential Monte Carlo (SMC) technique recently emerged in the field of statistics and engineering shows a great promise on solving a wide class of nonlinear filtering, prediction, and optimization problems, providing us with many exciting new research opportunities. The name "Monte Carlo" was coined in 1940s by scientists involved in designing atomic bombs and it refers to a technique in which computer is used to simulate and study a complex stochastic system. The technique was named after the famed gambling resort because its procedures incorporate the element of chance. A distinctive feature of SMC is its ability to sequentially simulate the system by considering one variable at a time. The general use of SMC appeared recently and its invasion into many fields of science and engineering has just begun. Researchers including people in this research group have demonstrated that SMC can be successfully adapted to solve chemistry, engineering, and statistical problems. Understanding its theoretical properties and extending the use of SMC to other fields are the main focuses of this project. More specifically, this research group will focuse on three major theoretical issues regarding the design of effective SMC-based computational tools and three important application areas including wireless communications, computational biology, and business data analysis. These applications are not only important by their own merits, but also essential as the test ground for the new theories being developed and as the sources of stimulation for new research directions for SMC. It is anticipated that this research will culminate in the formulation of novel SMC methodologies and will bring the promise of the SMC paradigm into the practical arena of many emerging applications. In particular, this research will bear fruits in the following areas: novel designs of signal processing and network control algorithms for wireless multimedia communications; developments of better algorithms analyzing biological sequence and structure data; and a SMC-based tool for business data analysis and prediction.
合作研究:序贯蒙特卡罗方法及其应用Jun Liu,哈佛大学Rong Chen,伊利诺伊大学芝加哥分校Xiaodong Wang,德克萨斯州A& M大学摘要(技术):序贯蒙特卡罗(SMC)方法最近出现在统计和工程领域,有望解决广泛的非线性滤波和优化问题,为统计和许多应用领域之间的交叉施肥开辟了新的前沿。SMC的一个显着特点是它能够通过递归模拟所涉及的变量来适应底层随机系统的动态。 虽然SMC的特殊形式可以追溯到20世纪50年代,但该方法的普遍使用直到最近才出现,并且其许多关键特性尚未得到很好的理解。 该研究小组将专注于设计有效的基于SMC的计算工具的三个主要理论问题和三个重要应用领域,即无线通信,计算生物学和商业数据分析。 在理论部分,他们将研究生成更好的蒙特卡罗样本跟踪系统动态的方法;研究对SMC有效性至关重要的重新配置的作用;并提出更有效的SMC算法的系统重新配置策略。 在应用部分,他们计划设计新的无线多媒体通信信号处理和网络控制算法;开发更好的多序列比对模型和基于SMC的蛋白质结构优化方法;并建立基于SMC的业务数据建模和分析工具。预计,拟议的研究将最终在制定新的SMC方法,并将带来的承诺SMC范式到实际的竞技场的许多新兴的application.Stochastic动态系统经常使用在许多应用领域,如自动控制,工程和金融。 对这些系统的统计分析至关重要。 然而,除了少数特殊情况下,这些系统的定量分析仍然是研究人员面临的主要挑战。 序列蒙特卡罗(SMC)技术是近年来在统计和工程领域中出现的一种新技术,它在解决非线性滤波、预测和优化等问题方面有着广阔的应用前景,为我们提供了许多新的研究机会。 蒙特卡洛这个名字是在20世纪40年代由参与设计原子弹的科学家创造的,它指的是一种用计算机模拟和研究复杂随机系统的技术。这项技术以著名的赌博胜地命名,因为它的程序包含了机会的元素。SMC的一个显着特点是它能够通过一次考虑一个变量来顺序模拟系统。 SMC的广泛应用是最近才出现的,它对科学和工程的许多领域的入侵才刚刚开始。包括该研究小组成员在内的研究人员已经证明,SMC可以成功地解决化学、工程和统计问题。了解其理论特性并将SMC的应用扩展到其他领域是本项目的主要重点。更具体地说,这个研究小组将集中在三个主要的理论问题,关于设计有效的基于SMC的计算工具和三个重要的应用领域,包括无线通信,计算生物学和商业数据分析。这些应用程序不仅是重要的,因为它们本身的优点,但也是必不可少的,作为新的理论正在开发的测试场和作为SMC的新的研究方向的刺激源。 预计这项研究将最终在制定新的SMC方法,并将带来的承诺SMC范式到许多新兴应用的实际竞技场。 特别是,这项研究将在以下领域取得成果:无线多媒体通信的信号处理和网络控制算法的新设计;更好的算法分析生物序列和结构数据的发展;和基于SMC的商业数据分析和预测工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Chen其他文献

Origin of the superior activity of surface doped SmMn2O5 mullites for NO oxidation: A first-principles based microkinetic study
表面掺杂 SmMn2O5 莫来石对 NO 氧化的优异活性的起源:基于第一性原理的微动力学研究
  • DOI:
    10.1016/j.jcat.2018.01.002
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Jia-Qiang Yang;Jie Zhang;Xiao Liu;Xian-Bao Duan;Yan-Wei Wen;Rong Chen;Bin Shan
  • 通讯作者:
    Bin Shan
A dual-functional three-dimensional herringbone-like electrode for a membraneless microfluidic fuel cell
用于无膜微流体燃料电池的双功能三维人字形电极
  • DOI:
    10.1016/j.jpowsour.2019.227058
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Zhenfei Liu;Dingding Ye;Rong Chen;Biao Zhang;Xun Zhu;Qiang Liao
  • 通讯作者:
    Qiang Liao
溶液挤出制备海藻酸钠水凝胶及其对药物释放行为的影响
Numerical Simulation of Dimethyl Ether/Air Laminar Diffusion Combustion Characteristic with the Different Fuel Inlet Velocity and Rotate Speed
不同燃料入口速度和转速下二甲醚/空气层流扩散燃烧特性的数值模拟
  • DOI:
    10.4028/www.scientific.net/amr.383-390.2984
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Chen;Hua Wang;H. Wang
  • 通讯作者:
    H. Wang
MCRORNA BOMARKERS FOR PROGNOSIS OF PATIENTS WITH PANCREATIC CANCER
用于胰腺癌患者预后的 MCRORNA 标记物
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenli Qiu;N. Duan;Xiao Chen;S. Ren;Yifen Zhang;Zhongqiu Wang;Rong Chen
  • 通讯作者:
    Rong Chen

Rong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Chen', 18)}}的其他基金

ADT: i-Group Learning and i-Detect for Dynamic Real Time Anomaly Detection with Applications in Maritime Threat Detection
ADT:用于动态实时异常检测的 i-Group Learning 和 i-Detect 及其在海上威胁检测中的应用
  • 批准号:
    1737857
  • 财政年份:
    2017
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
BIGDATA:F: Statistical Learning with Large Dynamic Tensor Data
BIGDATA:F:利用大型动态张量数据进行统计学习
  • 批准号:
    1741390
  • 财政年份:
    2017
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Nonlinear dynamic factor models and dynamic factor driven functional time series models
非线性动态因子模型和动态因子驱动的函数时间序列模型
  • 批准号:
    1513409
  • 财政年份:
    2015
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Continuing Grant
The fifth international workshop on Finance, Insurance, Probability and Statistics
第五届金融、保险、概率与统计国际研讨会
  • 批准号:
    1540863
  • 财政年份:
    2015
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research:Modeling and Analysis of Fracture Network for Shale Gas Development and Its Environmental Impact
合作研究:页岩气开发裂缝网络建模与分析及其环境影响
  • 批准号:
    1209085
  • 财政年份:
    2012
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Continuing Grant
Analysis of Functional Time Series
函数时间序列分析
  • 批准号:
    0905763
  • 财政年份:
    2009
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborartive Research: Monte Carlo Study of Pseudoknotted RNA Molecules: Motifs, Structure and Folding
合作研究:假结 RNA 分子的蒙特卡罗研究:基序、结构和折叠
  • 批准号:
    0800183
  • 财政年份:
    2008
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Continuing Grant
Monte Carlo Filters for Nonlinear and Non-Gaussian Dynamic Systems
用于非线性和非高斯动态系统的蒙特卡罗滤波器
  • 批准号:
    9982846
  • 财政年份:
    1999
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Nonparametric Modeling and Prediction for Time Series Analysis
时间序列分析的非参数建模和预测
  • 批准号:
    9626113
  • 财政年份:
    1996
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Time Series Analysis
数学科学:非线性时间序列分析
  • 批准号:
    9301193
  • 财政年份:
    1993
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
  • 批准号:
    10755010
  • 财政年份:
    2023
  • 资助金额:
    $ 20.88万
  • 项目类别:
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
  • 批准号:
    2303000
  • 财政年份:
    2023
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: Fair Sequential Collective Decision-Making
合作研究:NSF-CSIRO:公平顺序集体决策
  • 批准号:
    2302999
  • 财政年份:
    2023
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Verifying and Enforcing Safety Constraints in AI-based Sequential Generation
合作研究:SLES:验证和执行基于人工智能的顺序生成中的安全约束
  • 批准号:
    2331967
  • 财政年份:
    2023
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323113
  • 财政年份:
    2023
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323112
  • 财政年份:
    2023
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: SLES: Verifying and Enforcing Safety Constraints in AI-based Sequential Generation
合作研究:SLES:验证和执行基于人工智能的顺序生成中的安全约束
  • 批准号:
    2331966
  • 财政年份:
    2023
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
  • 批准号:
    2149588
  • 财政年份:
    2022
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Sequential Decision Making Under Uncertainty With Submodular Rewards
合作研究:CIF:小:不确定性下的顺序决策与子模奖励
  • 批准号:
    2149617
  • 财政年份:
    2022
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152717
  • 财政年份:
    2022
  • 资助金额:
    $ 20.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了