Nonparametric Modeling and Prediction for Time Series Analysis

时间序列分析的非参数建模和预测

基本信息

  • 批准号:
    9626113
  • 负责人:
  • 金额:
    $ 6.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-06-15 至 1999-05-31
  • 项目状态:
    已结题

项目摘要

DMS9626113 Chen This research is concerned with nonparametric model building procedures and nonparametric prediction methods in nonlinear time series analysis. The first objective of this research is to develop a new nonparametric modeling procedure for nonlinear time series. The investigator studies the functional coefficient autoregressive models and makes the model easier to use in practice. In particular, a weighted local linear regression procedure is studied. This procedure differs from the classical local linear regression for curve fitting where the response function is of interest. Here, estimating the coefficient functions are of main interest. A procedure for detecting discontinuities in the coefficient functions is studied as well. The second objective of this research is concerned with multi-step predictions using nonparametric smoothing techniques. The investigator studies the properties of a multi-stage nonparametric predictor, which is closely related to the iterative integration procedures for multi-step prediction. Preliminary study shows that the new method does improve the accuracy of the prediction. The first goal is to show that the predictor is applicable to a wide class of nonlinear AR models. The second goal is to investigate the practical implementation of the method, particularly the automatic bandwidth selection method and prediction strategy. This research is concerned with model building procedures and prediction methods in nonlinear time series analysis. A time series is a set of data observed over a period of time. For example, daily ozone and pollutant readings for environmental study, quarterly unemployment rate or GNP for economical study and noisy telecommunication signals are all subjects of time series analysis. Time series analysis tries to reveal the generating mechanism of the observed time series and to provide sensible methods to predict future observations based on current and past information. Linear ti me series models assumes the future observations relate to the current and past observations in simple linear functions while nonlinear models assume complex relationship. In this research, the investigator follows the principle of `letting the data speak for themselves' and develops modeling procedures for nonlinear time series. It is used to overcome the difficulty encountered in real applications of choosing an appropriate model. The second objective of this research is concerned with multi-step predictions for nonlinear time series. Nonlinear time series models have been shown to have certain advantages in multi-step forecasting over linear models. In this research, the investigator studies the properties of a new predictor that improves the prediction accuracy. There are sufficient reasons to believe that the results of this research should have significant contributions in nonlinear time series analysis, which has many important applications in the fields of economics, telecommunication, meteorology, environment and many others.
本研究主要研究非参数时间序列分析中的非参数建模过程和非参数预测方法。 本研究的第一个目的是发展一个新的非参数非线性时间序列建模程序。 研究了函数系数自回归模型,使模型更易于实际应用。 特别是,加权局部线性回归过程进行了研究。 该过程不同于经典的局部线性回归曲线拟合,其中响应函数是感兴趣的。 在这里,估计系数函数是主要的兴趣。 还研究了检测系数函数不连续性的方法。 本研究的第二个目标是 使用非参数平滑技术的多步预测。 研究了与多步预测的迭代积分过程密切相关的多步非参数预测的性质。 初步研究表明,新方法确实提高了预测精度。 第一个目标是表明,预测是适用于广泛的一类非线性AR模型。 第二个目标是研究该方法的实际实现,特别是自动带宽选择方法和预测策略。 本研究系关于非线性时间序列分析之建模程序与预测方法。 时间序列是在一段时间内观察到的一组数据。 举例来说,环境研究所需的每日臭氧和污染物读数、经济研究所需的每季失业率或本地居民生产总值,以及嘈杂的电讯讯号,都是时间数列分析的对象。 时间序列分析试图揭示 观测时间序列的生成机制,并提供合理的方法来预测未来的观测的基础上,当前和过去的信息。 线性时间序列模型假设未来观测值与当前和过去观测值之间存在简单的线性关系,而非线性模型假设未来观测值与当前和过去观测值之间存在复杂的关系。 在这项研究中,研究者遵循“让数据为自己说话”的原则,开发了非线性时间序列的建模程序。 它是用来克服在真实的应用中遇到的困难,选择一个合适的模型。 本研究的第二个目标是关于非线性时间序列的多步预测。非线性时间序列模型在多步预测中比线性模型具有一定的优势。 在这项研究中,研究人员研究了一种新的预测器,提高预测精度的属性。 有足够的理由相信,本研究的结果应该有显着的贡献,在非线性时间序列分析,这在经济,电信,气象,环境等领域有许多重要的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Chen其他文献

Origin of the superior activity of surface doped SmMn2O5 mullites for NO oxidation: A first-principles based microkinetic study
表面掺杂 SmMn2O5 莫来石对 NO 氧化的优异活性的起源:基于第一性原理的微动力学研究
  • DOI:
    10.1016/j.jcat.2018.01.002
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Jia-Qiang Yang;Jie Zhang;Xiao Liu;Xian-Bao Duan;Yan-Wei Wen;Rong Chen;Bin Shan
  • 通讯作者:
    Bin Shan
A dual-functional three-dimensional herringbone-like electrode for a membraneless microfluidic fuel cell
用于无膜微流体燃料电池的双功能三维人字形电极
  • DOI:
    10.1016/j.jpowsour.2019.227058
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Zhenfei Liu;Dingding Ye;Rong Chen;Biao Zhang;Xun Zhu;Qiang Liao
  • 通讯作者:
    Qiang Liao
溶液挤出制备海藻酸钠水凝胶及其对药物释放行为的影响
Numerical Simulation of Dimethyl Ether/Air Laminar Diffusion Combustion Characteristic with the Different Fuel Inlet Velocity and Rotate Speed
不同燃料入口速度和转速下二甲醚/空气层流扩散燃烧特性的数值模拟
  • DOI:
    10.4028/www.scientific.net/amr.383-390.2984
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Chen;Hua Wang;H. Wang
  • 通讯作者:
    H. Wang
MCRORNA BOMARKERS FOR PROGNOSIS OF PATIENTS WITH PANCREATIC CANCER
用于胰腺癌患者预后的 MCRORNA 标记物
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenli Qiu;N. Duan;Xiao Chen;S. Ren;Yifen Zhang;Zhongqiu Wang;Rong Chen
  • 通讯作者:
    Rong Chen

Rong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Chen', 18)}}的其他基金

ADT: i-Group Learning and i-Detect for Dynamic Real Time Anomaly Detection with Applications in Maritime Threat Detection
ADT:用于动态实时异常检测的 i-Group Learning 和 i-Detect 及其在海上威胁检测中的应用
  • 批准号:
    1737857
  • 财政年份:
    2017
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
BIGDATA:F: Statistical Learning with Large Dynamic Tensor Data
BIGDATA:F:利用大型动态张量数据进行统计学习
  • 批准号:
    1741390
  • 财政年份:
    2017
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Nonlinear dynamic factor models and dynamic factor driven functional time series models
非线性动态因子模型和动态因子驱动的函数时间序列模型
  • 批准号:
    1513409
  • 财政年份:
    2015
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
The fifth international workshop on Finance, Insurance, Probability and Statistics
第五届金融、保险、概率与统计国际研讨会
  • 批准号:
    1540863
  • 财政年份:
    2015
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Collaborative Research:Modeling and Analysis of Fracture Network for Shale Gas Development and Its Environmental Impact
合作研究:页岩气开发裂缝网络建模与分析及其环境影响
  • 批准号:
    1209085
  • 财政年份:
    2012
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Analysis of Functional Time Series
函数时间序列分析
  • 批准号:
    0905763
  • 财政年份:
    2009
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Collaborartive Research: Monte Carlo Study of Pseudoknotted RNA Molecules: Motifs, Structure and Folding
合作研究:假结 RNA 分子的蒙特卡罗研究:基序、结构和折叠
  • 批准号:
    0800183
  • 财政年份:
    2008
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sequential Monte Carlo Methods and Their Applications
合作研究:序贯蒙特卡罗方法及其应用
  • 批准号:
    0073601
  • 财政年份:
    2000
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Monte Carlo Filters for Nonlinear and Non-Gaussian Dynamic Systems
用于非线性和非高斯动态系统的蒙特卡罗滤波器
  • 批准号:
    9982846
  • 财政年份:
    1999
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Time Series Analysis
数学科学:非线性时间序列分析
  • 批准号:
    9301193
  • 财政年份:
    1993
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
  • 批准号:
    2246158
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
  • 批准号:
    10852318
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Modeling, measurement and prediction of cardiac magneto-stimulation thresholds
心脏磁刺激阈值的建模、测量和预测
  • 批准号:
    10734438
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Sequential Modeling for Prediction of Periodontal Diseases: an intra-Collaborative Practice-based Research study (ICPRS)
牙周病预测的序列模型:基于内部协作实践的研究 (ICPRS)
  • 批准号:
    10755010
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Construction of a learning support system through learning behavior prediction using student modeling
使用学生建模通过学习行为预测构建学习支持系统
  • 批准号:
    23K17604
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
ATD: Dynamic Modeling for Extreme Event Prediction with Uncertainty Quantification with Multi-panel Time Series
ATD:通过多面板时间序列不确定性量化进行极端事件预测的动态建模
  • 批准号:
    2319260
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Study on prediction of profile formation processes by turbulent transport modeling of experimental fusion plasmas
实验聚变等离子体湍流输运模型预测剖面形成过程的研究
  • 批准号:
    23K03366
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Integrative risk modeling for early prediction of endometriosis and its long-term health outcomes
子宫内膜异位症早期预测及其长期健康结果的综合风险模型
  • 批准号:
    10567234
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Prediction of endovascular treatment effectiveness for cerebral aneurysms using computational fluid dynamics with porous media modeling
使用计算流体动力学和多孔介质模型预测脑动脉瘤的血管内治疗效果
  • 批准号:
    23K15665
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了