Collaborartive Research: Monte Carlo Study of Pseudoknotted RNA Molecules: Motifs, Structure and Folding

合作研究:假结 RNA 分子的蒙特卡罗研究:基序、结构和折叠

基本信息

  • 批准号:
    0800183
  • 负责人:
  • 金额:
    $ 68.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

RNA molecules are an important component of the cellular machinery. They are now known to be essential for numerous biological processes, including protein synthesis, transcription regulation, chromosome replication, viral infection, and RNA interference. However, our knowledge of RNA molecules is still limited. This research project fills important gaps in current RNA studies by introducing novel molecular models and efficient computational tools. Specifically, the research team aims to solve the following problems under a coherent theme of studying pseudoknotted RNA structure and understanding their properties: (1) Estimation of entropy of key secondary elements of RNA molecules; (2) Identification of stable pseudoknot motifs from RNA sequences and developing libraries of pseudoknot motifs for RNA families; (3) Prediction of three dimensional ensemble of pseudoknotted RNA molecules and characterize their folding mechanism. All these problems involve exploration of probability distributions on very large state spaces where novel mathematical and statistical tools must be developed. Specifically, the research team studies and develops several techniques including efficient constrained Sequential Monte Carlo (SMC) methods, efficient Markov Chain Monte Carlo (MCMC) methods and mixing rate acceleration schemes and their combinations. The methodological development provides a solid foundation for solving the underlying biological problems. In return, those problems serve as the testing ground and inspiration of new statistical ideas and procedures. The cross-fertilization is ideal for significant advances in both biological and statistical sciences. It provides a perfect environment of education and training of the next generation of scientists and researchers in the interdisciplinary field of mathematics/ statistics and biology. Integrated education and research activities at post-doc, graduate and undergraduate levels are conducted. A set of free software are produced for implementing the developed algorithms.This project intends to improve our understanding of RNA, an important class of biomolecules and an important component of the cellular machinery. They are now known to be essential for numerous biological processes. A deeper understanding of RNA, its dynamics and functionality, will increase our ability to develop new medicines and diagnostic procedure and propel further technological advancement, hence beneficial to the human society. Innovative statistical tools are developed to solve the underlying problems. Such tools can also be used in many other applications. The project is a cross-fertilization between statistical science and bioinformatics, computational biology, and biophysics. It provides a perfect environment of education and training of the next generation of scientists and researchers in the interdisciplinary field of mathematics/statistics and biology. Integrated education and research activities at post-doc, graduate and undergraduate levels are conducted and special attentions are paid to attract women and minority students into the wonderful research career in the field of math-biology. A set of public and free software are developed for implementing the developed algorithms. It is able to empower biologists and bioinformatics researchers with new algorithms and software in their own research and discovery.
RNA分子是细胞机器的重要组成部分。现在已知它们对于许多生物过程是必不可少的,包括蛋白质合成、转录调节、染色体复制、病毒感染和RNA干扰。然而,我们对RNA分子的了解仍然有限。该研究项目通过引入新的分子模型和有效的计算工具填补了当前RNA研究的重要空白。具体而言,研究小组的目标是在研究伪结RNA结构并了解其性质的主题下解决以下问题:(1)RNA分子关键二级元件的熵估计;(2)从RNA序列中鉴定稳定的伪结基序并开发RNA家族的伪结基序库;(3)从RNA序列中识别稳定的伪结基序并开发RNA家族的伪结基序库。(3)预测假结RNA分子的三维系综,并表征其折叠机制。 所有这些问题都涉及探索非常大的状态空间的概率分布,必须开发新的数学和统计工具。具体而言,研究小组研究和开发了几种技术,包括有效的约束顺序蒙特卡罗(SMC)方法,有效的马尔可夫链蒙特卡罗(MCMC)方法和混合速率加速方案及其组合。方法学的发展为解决潜在的生物学问题提供了坚实的基础。反过来,这些问题又成为新的统计思想和程序的试验场和灵感来源。这种交叉受精对于生物科学和统计科学的重大进步都是理想的。它为数学/统计学和生物学跨学科领域的下一代科学家和研究人员提供了完美的教育和培训环境。在博士后、研究生和本科生层面开展综合教育和研究活动。本项目旨在提高我们对RNA的理解,RNA是一类重要的生物分子,也是细胞机器的重要组成部分。现在已知它们对许多生物过程是必不可少的。深入了解RNA及其动力学和功能,将提高我们开发新药物和诊断程序的能力,并推动进一步的技术进步,从而有益于人类社会。开发创新的统计工具来解决根本问题。这些工具也可以用于许多其他应用中。该项目是统计科学与生物信息学,计算生物学和生物物理学之间的交叉施肥。它为数学/统计学和生物学跨学科领域的下一代科学家和研究人员提供了完美的教育和培训环境。 在博士后,研究生和本科生层面开展综合教育和研究活动,并特别注意吸引妇女和少数民族学生进入数学生物学领域的精彩研究生涯。一组公共和免费的软件开发用于实现所开发的算法。它能够使生物学家和生物信息学研究人员在自己的研究和发现中使用新的算法和软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Chen其他文献

溶液挤出制备海藻酸钠水凝胶及其对药物释放行为的影响
A novel decoder based on Bayesian rules for task‐driven object segmentation
一种基于贝叶斯规则的新型解码器,用于任务驱动的对象分割
  • DOI:
    10.1049/ipr2.12676
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Yuxiang Cai;Yuanlong Yu;Weijie Jiang;Rong Chen;Weitao Zheng;Xi Wu;Renjie Su
  • 通讯作者:
    Renjie Su
Methanogenic degradation of municipal wastewater by an anaerobic membrane bioreactor at room temperature
厌氧膜生物反应器室温下产甲烷降解城市污水
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Chen;Hongyu Jiang;Yu-You Li;Rong Chen
  • 通讯作者:
    Rong Chen
The burden of ambient air pollution on years of life lost in Wuxi, China, 2012e2015: A time-series study using a distributed lag nonlinear model
2012 年至 2015 年中国无锡环境空气污染造成的寿命损失:使用分布式滞后非线性模型的时间序列研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Jingying Zhu;Xuhui Zhang;Xi Zhang;Mei Dong;Jiamei Wu;Yunqiu Dong;Rong Chen;Xin Liang Ding;Chunhua Huang;Qi Zhang;Weijie Zhou
  • 通讯作者:
    Weijie Zhou
Preliminary exploration on pretreatment with metal chlorides and enzymatic hydrolysis of bagasse
金属氯化物预处理及酶解甘蔗渣的初步探索
  • DOI:
    10.1016/j.biombioe.2014.09.026
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Liheng Chen;Rong Chen;Shiyu Fu
  • 通讯作者:
    Shiyu Fu

Rong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Chen', 18)}}的其他基金

ADT: i-Group Learning and i-Detect for Dynamic Real Time Anomaly Detection with Applications in Maritime Threat Detection
ADT:用于动态实时异常检测的 i-Group Learning 和 i-Detect 及其在海上威胁检测中的应用
  • 批准号:
    1737857
  • 财政年份:
    2017
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
BIGDATA:F: Statistical Learning with Large Dynamic Tensor Data
BIGDATA:F:利用大型动态张量数据进行统计学习
  • 批准号:
    1741390
  • 财政年份:
    2017
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
The fifth international workshop on Finance, Insurance, Probability and Statistics
第五届金融、保险、概率与统计国际研讨会
  • 批准号:
    1540863
  • 财政年份:
    2015
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Nonlinear dynamic factor models and dynamic factor driven functional time series models
非线性动态因子模型和动态因子驱动的函数时间序列模型
  • 批准号:
    1513409
  • 财政年份:
    2015
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Continuing Grant
Collaborative Research:Modeling and Analysis of Fracture Network for Shale Gas Development and Its Environmental Impact
合作研究:页岩气开发裂缝网络建模与分析及其环境影响
  • 批准号:
    1209085
  • 财政年份:
    2012
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Continuing Grant
Analysis of Functional Time Series
函数时间序列分析
  • 批准号:
    0905763
  • 财政年份:
    2009
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Sequential Monte Carlo Methods and Their Applications
合作研究:序贯蒙特卡罗方法及其应用
  • 批准号:
    0073601
  • 财政年份:
    2000
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Continuing Grant
Monte Carlo Filters for Nonlinear and Non-Gaussian Dynamic Systems
用于非线性和非高斯动态系统的蒙特卡罗滤波器
  • 批准号:
    9982846
  • 财政年份:
    1999
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Nonparametric Modeling and Prediction for Time Series Analysis
时间序列分析的非参数建模和预测
  • 批准号:
    9626113
  • 财政年份:
    1996
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Time Series Analysis
数学科学:非线性时间序列分析
  • 批准号:
    9301193
  • 财政年份:
    1993
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335904
  • 财政年份:
    2024
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2335905
  • 财政年份:
    2024
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
  • 批准号:
    2220840
  • 财政年份:
    2021
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
  • 批准号:
    2053485
  • 财政年份:
    2021
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
  • 批准号:
    2053454
  • 财政年份:
    2021
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032077
  • 财政年份:
    2020
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
  • 批准号:
    2032136
  • 财政年份:
    2020
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
  • 批准号:
    2038030
  • 财政年份:
    2020
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
  • 批准号:
    2037984
  • 财政年份:
    2020
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
  • 批准号:
    1854662
  • 财政年份:
    2019
  • 资助金额:
    $ 68.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了