Bayesian Estimation of Host-Parasite Cospeciation

宿主-寄生虫共成的贝叶斯估计

基本信息

  • 批准号:
    0075406
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-01 至 2002-09-30
  • 项目状态:
    已结题

项目摘要

DEB-0075406John P. HuelsenbeckDr. John P. Huelsenbeck of the University of Rochester, has been awarded a grant to use Bayesian statistacal methods to study coevolutionary interactions between parasites and their host species. He is collaborating with Dr. Bret R. Larget of Duquesne University and Dr. Bruce H. Rannala of the University of Alberta (Canada) on this research. Parasites are organisms that are dependent on another organism (the host) for their survival and reproduction and are typically harmful to the host. Often, the association of a host and parasite is highly specific and ancient. In such cases, it is possible to infer the history of association between hosts and parasites by examining the phylogeny (genealogy) of related hosts and parasites. It is not uncommon for the phylogenies of hosts and parasites to be fully or partially concordant as the two groups have evolved in parallel. For example, if A, B, and C are the host species, and a, b, and c are the respective parasite species (species a parasitizes host A, and so on), a concordant phylogeny of three hosts and parasites might be ((A,B),C) and ((a,b),c). The host phylogeny is consistent with species A and B being each others closest relatives. Similarly, the parasites associated with A and B (namely, a and b) are also each others closest relatives. This pattern is consistent with cospeciation of the hosts and parasites; a speciation event in a host causes the associated parasite to speciate via allopatric speciation.Typically, the phylogenies of hosts and parasites are not completely concordant. Morevoer, the phylogenies of the hosts and parasites are never known without error. We have taken a Bayesian approach to infer the history of host-parasite association. The research funded by NSF proposes to estimate rates of host-switching, parasite speciation, and parasite extinction while accommodating uncertainty in the phylogenies of hosts and parasites. A numerical technique called Markov chain Monte Carlo will be used to perform the Bayesian inference..
约翰·P·惠森贝克博士。罗切斯特大学的John P.Huelsenbeck获得了使用贝叶斯统计方法研究寄生虫与其宿主物种之间的共同进化相互作用的资助。他正在与杜肯大学的布雷特·R·拉格特博士和加拿大阿尔伯塔大学的布鲁斯·H·兰纳拉博士合作进行这项研究。寄生虫是依赖另一种有机体(宿主)生存和繁殖的有机体,通常对宿主有害。通常情况下,宿主和寄生虫之间的联系是高度特定和古老的。在这种情况下,可以通过检查相关宿主和寄生虫的系谱(系谱)来推断宿主和寄生虫之间的关联史。寄主和寄生虫的系统发育完全或部分一致的情况并不少见,因为这两个群体是平行进化的。例如,如果A、B和C是宿主物种,而a、b和c是各自的寄生虫物种(物种a寄生宿主A,依此类推),则三个宿主和寄生虫的一致系统发育可能是((A,B),C)和((a,b),c)。寄主系统发育符合种A和种B的近亲关系。同样,与A和B相关的寄生虫(即a和b)也是彼此最接近的亲戚。这种模式与宿主和寄生虫的同种关系是一致的;宿主中的物种形成事件导致相关寄生虫通过异地物种物种形成。典型地,宿主和寄生虫的系统发育并不完全一致。更重要的是,寄主和寄生虫的系统发育是不可能没有错误的。我们采用了贝叶斯方法来推断宿主与寄生虫之间的联系历史。这项由NSF资助的研究建议在考虑宿主和寄生虫系统发育的不确定性的同时,估计宿主切换、寄生虫物种形成和寄生虫灭绝的速度。将使用一种名为马尔科夫链蒙特卡罗的数值技术来执行贝叶斯推理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Huelsenbeck其他文献

John Huelsenbeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Huelsenbeck', 18)}}的其他基金

Collaborative Research: ABI Development: Improving the stability, usability, and speed of the RevBayes platform for phylogenetic analysis
合作研究:ABI 开发:提高 RevBayes 系统发育分析平台的稳定性、可用性和速度
  • 批准号:
    1759811
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Developing a platform for Bayesian inference of phylogeny
开发系统发育贝叶斯推理平台
  • 批准号:
    0918791
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Model Choice and Model Averaging in Molecular Phylogenetics
分子系统发育学中的模型选择和模型平均
  • 批准号:
    0715381
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Model Choice and Model Averaging in Molecular Phylogenetics
分子系统发育学中的模型选择和模型平均
  • 批准号:
    0445453
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Bayesian Estimation of Host-Parasite Cospeciation
宿主-寄生虫共成的贝叶斯估计
  • 批准号:
    0244465
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Experimental Evolution of the Bacteriophage Group Leviviridae
噬菌体群的实验进化
  • 批准号:
    0244477
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Experimental Evolution of the Bacteriophage Group Leviviridae
噬菌体群的实验进化
  • 批准号:
    0075404
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
NSF/Alfred P. Sloan Foundation Postdoctoral Research Fellowship in Molecular Evolution for FY 1997
NSF/Alfred P. Sloan 基金会 1997 财年分子进化博士后研究奖学金
  • 批准号:
    9750079
  • 财政年份:
    1997
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship Award

相似海外基金

Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
  • 批准号:
    2340089
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Collaborative Research: Road Information Discovery through Privacy-Preserved Collaborative Estimation in Connected Vehicles
协作研究:通过联网车辆中保护隐私的协作估计来发现道路信息
  • 批准号:
    2422579
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Freshness-marker-based estimation of vegetable freshness by nondestructive Vis-NIR spectroscopy
基于新鲜度标记的无损可见-近红外光谱法评估蔬菜新鲜度
  • 批准号:
    24K09171
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Thermospheric Estimation and CHaracterization with Nitric Oxide (TECHNO)
使用一氧化氮进行热层估计和表征 (TECHNO)
  • 批准号:
    2343844
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Timely Estimation of Nitrogen Oxides Emissions for Improved Monitoring and Simulation of Atmospheric Chemical Processes
职业:及时估算氮氧化物排放,以改进大气化学过程的监测和模拟
  • 批准号:
    2338758
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
A Machine Learning Framework for Concrete Workability Estimation
用于混凝土和易性评估的机器学习框架
  • 批准号:
    LP220100390
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Linkage Projects
Safety Advancing Federated Estimation of Risk using AI (SAFER AI)
使用人工智能推进安全联合风险估计 (SAFER AI)
  • 批准号:
    10093091
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了