Practical Reasoning in Autonomous Agents

自主代理的实用推理

基本信息

  • 批准号:
    0080888
  • 负责人:
  • 金额:
    $ 33.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

AI is approaching the point where it will be possible to build autonomous robotic agents capable of performing human-like tasks without direct human control. Such autonomous agents must be able to plan their activities in the face of incomplete knowledge of their environment. This project aims at understanding how such planning works and building implemented systems that accomplish it. Specifically, this investigation is aimed at the construction of an artificial rational agent capable of engaging in decision-theoretic planning in environments of realistic complexity and unpredictability. The design of a system to do automated planning is one of the traditional goals of artificial intelligence research, and some highly successful planning systems have been constructed for use in narrowly constrained environment; however, these systems presuppose that the planner knows everything it needs to know when it is first presented with the planning problem, and most of them further require complete knowledge of all relevant aspects of the agent's environment and knowledge of precisely what will result from performing any relevant act in any circumstance the planner will encounter. While such assumptions might be satisfied by an industrial robot operating in a constrained environment, human beings plan without satisfying any of these conditions. In particular, planning problems often drives the search for new knowledge rather than presupposing that the planning agent knows everything it needs to know from the beginning. And human beings do not assume that they can predict with certainty what will happen when they perform any available action under any conceivable circumstances. In constructing and evaluating plans, people take account of the varying probabilities of different consequences of actions, and they assign values and costs to those consequences before deciding whether to adopt a proposed plan. In other words, they plan decision-theoretically. The objective of this project is to understand how decision-theoretic planning is possible in an agent operating in an uncooperative and only partially predictable environment, and then to build an artificial agent whose planning capabilities more closely approximate those of human beings. This should illuminate some of the structure of rational cognition in both artificial agents and human agents.
人工智能正在接近这样一个点,即有可能构建能够在没有人类直接控制的情况下执行类似人类任务的自主机器人代理。 这种自主行为者必须能够在对其环境不完全了解的情况下规划其活动。 本项目旨在了解这种规划是如何工作的,并建立实现它的系统。具体来说,本研究旨在构建一个人工理性代理,能够在现实复杂性和不可预测性的环境中进行决策理论规划。自动规划系统的设计是人工智能研究的传统目标之一,并且已经构建了一些非常成功的规划系统用于窄约束环境;然而,这些系统的前提是计划者在第一次遇到计划问题时就知道了它需要知道的一切,而且大多数还需要对行动者所处环境的所有相关方面有完整的了解,并精确地知道在计划者将遇到的任何情况下执行任何相关行动会产生什么结果。 虽然在受限环境中操作的工业机器人可能满足这些假设,但人类在不满足任何这些条件的情况下进行规划。 特别是,规划问题往往会驱动对新知识的搜索,而不是预先假设规划代理从一开始就知道它需要知道的一切。 而且,人类并不认为他们能够肯定地预测,当他们在任何可以想象的情况下采取任何可行的行动时,会发生什么。 在制定和评估计划时,人们会考虑行动不同后果的不同概率,并在决定是否采用拟议的计划之前为这些后果分配价值和成本。 换句话说,他们在理论上计划决策。 这个项目的目标是了解如何决策理论规划是可能的代理在一个不合作的,只有部分可预测的环境,然后建立一个人工代理的规划能力更接近人类。 这应该可以阐明人工智能体和人类智能体的理性认知结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Pollock其他文献

128 - Single-dose, Non-Opioid Nanomedicine Analgesic for Battlefield Pain Control with Neuromuscular Regenerative Effects
128 - 用于战场疼痛控制且具有神经肌肉再生作用的单剂量非阿片类纳米药物镇痛剂
  • DOI:
    10.1016/j.jpain.2025.104925
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Jelena Janjic;John Pollock;Vijay Gorantla
  • 通讯作者:
    Vijay Gorantla

John Pollock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Pollock', 18)}}的其他基金

MRI: Acquistion of a Confocal Microscope for research and teaching
MRI:购买共焦显微镜用于研究和教学
  • 批准号:
    1726368
  • 财政年份:
    2017
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
A System of Reasoning for Intelligent Robots
智能机器人推理系统
  • 批准号:
    0412791
  • 财政年份:
    2004
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Acquisition of a Confocal Microscope
购买共焦显微镜
  • 批准号:
    0400776
  • 财政年份:
    2004
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
U.S.-Australia Cooperative Research: Molecular Genetic Analysis of Normal and Mutant Visual System Development Studied with 3-D Time Lapse Microscopy
美国-澳大利亚合作研究:使用 3D 延时显微镜研究正常和突变视觉系统发育的分子遗传学分析
  • 批准号:
    0223204
  • 财政年份:
    2002
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
U.S.-Australia Cooperative Research: Molecular Genetic Analysis of Normal and Mutant Visual System Development Studied with 3-D Time Lapse Microscopy
美国-澳大利亚合作研究:使用 3D 延时显微镜研究正常和突变视觉系统发育的分子遗传学分析
  • 批准号:
    9731607
  • 财政年份:
    1998
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Planning Visit: Analysis of Normal and Genetically Mutant Visual System Development Using Multi-Dimensional Time Lapse Microscopy
计划访问:使用多维延时显微镜分析正常和基因突变的视觉系统发育
  • 批准号:
    9605205
  • 财政年份:
    1997
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Realistic Planning in OSCAR
OSCAR 中的现实规划
  • 批准号:
    9634106
  • 财政年份:
    1996
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Continuing Grant
Probabilistic Reasoning
概率推理
  • 批准号:
    8306013
  • 财政年份:
    1983
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
A Theory of Direct Inference
直接推理理论
  • 批准号:
    8107614
  • 财政年份:
    1981
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant

相似海外基金

Defeasible Reasoning for Resilient Autonomous Systems
弹性自治系统的可废止推理
  • 批准号:
    2888276
  • 财政年份:
    2023
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Studentship
BRITE Fellow: Autonomous Systems that Accommodate Human Perception and Reasoning about Uncertainty
BRITE 研究员:适应人类对不确定性的感知和推理的自治系统
  • 批准号:
    2227338
  • 财政年份:
    2023
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Using Abstraction in Reasoning about Autonomous Agents and Multiagent Systems
在自治代理和多代理系统的推理中使用抽象
  • 批准号:
    RGPIN-2022-04565
  • 财政年份:
    2022
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Discovery Grants Program - Individual
S&AS:FND:Viewer-Centric Spatial Reasoning and Learning for Safe Autonomous Navigation
S
  • 批准号:
    1849333
  • 财政年份:
    2019
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Representation and reasoning for autonomous agents
自主代理的表示和推理
  • 批准号:
    918-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Discovery Grants Program - Individual
S&AS: INT: Inference, Reasoning, and Learning for Robust Autonomous Driving
S
  • 批准号:
    1724282
  • 财政年份:
    2017
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Standard Grant
Representation and reasoning for autonomous agents
自主代理的表示和推理
  • 批准号:
    918-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Discovery Grants Program - Individual
Representation and reasoning for autonomous agents
自主代理的表示和推理
  • 批准号:
    918-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Discovery Grants Program - Individual
Representation and reasoning for autonomous agents
自主代理的表示和推理
  • 批准号:
    918-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Discovery Grants Program - Individual
Representation and reasoning for autonomous agents
自主代理的表示和推理
  • 批准号:
    918-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 33.12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了