S&AS:FND:Viewer-Centric Spatial Reasoning and Learning for Safe Autonomous Navigation
S
基本信息
- 批准号:1849333
- 负责人:
- 金额:$ 47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Autonomous navigation has emerged as one of contemporary society's most promising technological advances. Robust, self-improving strategy for robot navigation will benefit several industries such as commercial and non-commercial transportation, large-scale infrastructure inspection, industrial warehousing, disaster response, and assistive robotics. The main challenge to robust navigation lies in developing the ability to navigate unstructured, dynamic environments for which there may be insufficient data collected for training machine learning methods, and for which model-based reasoning is too complex. A purely learning-based strategy fails to have operational guarantees (i.e., collision avoidance is not guaranteed). The research proposes a mixed method solution whereby physics-based reasoning and machine learning work together to resolve the unstructured navigation problem. The combined approach will lead to a cognizant and reflective navigation pipeline whose performance improves with time. A central claim of this project is that the learning module will act as an efficient multi-hypothesis generator for potential navigation decisions, for which options can be processed, scored, and confirmed by the physics-based component. The learning system will subsequently use these scores for online improvement. The net result will be mobile robots that are cognizant of their operation and adaptable to new information gained during task execution. The research goal of this proposal is to derive a safe autonomous navigation framework for general settings through the use of a viewer-centric processing paradigm capable of leveraging learning and model driven methods to overcome the limitations of entirely object-centric approaches to navigation. Appealing to Marr's framework for visual processing, the project investigates a viewer-centric approach to navigation. By more tightly linking perceptual and planning representations through the viewer-centric approach, the new approach leverages measurements obtained during navigation to provide online assessment for improving performance and generating knowledge regarding navigation through unknown scenes. The project investigates the effect of a viewer-centric model representation for use in local planning, as well as the connection of such representations to reflective, experiential machine learning for improved performance that leverage the model-based planning subcomponent. The research involves meeting the following objectives: 1) Confirming the robustness of a viewer-centric navigation framework combining model-based and deep learning-based approaches for safe navigation with cognizant and adaptive operation; 2) Demonstrating enhanced reasoning through scene-selective strategies that improve through experience; and 3) Extending the framework to dynamic scenes through learned models for the relative physics of motion, whereby moving objects are modeled in the viewer's frame of reference to detect dangerous relative motion profiles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自主导航已经成为当代社会最有前途的技术进步之一。强大的、自我改进的机器人导航策略将使几个行业受益,如商业和非商业运输、大规模基础设施检查、工业仓储、灾难响应和辅助机器人。鲁棒导航的主要挑战在于开发导航非结构化、动态环境的能力,这些环境可能没有足够的数据用于训练机器学习方法,并且基于模型的推理过于复杂。纯粹的基于学习的策略没有操作保证(即不能保证避免碰撞)。该研究提出了一种混合方法解决方案,即基于物理的推理和机器学习共同解决非结构化导航问题。这两种方法的结合将产生一种认知和反射的导航管道,其性能随着时间的推移而提高。这个项目的核心主张是,学习模块将作为一个有效的多假设生成器,用于潜在的导航决策,其中的选项可以被基于物理的组件处理、评分和确认。学习系统随后将使用这些分数进行在线改进。最终的结果将是移动机器人能够识别自己的操作,并适应任务执行过程中获得的新信息。本提案的研究目标是通过使用以观众为中心的处理范式,利用学习和模型驱动的方法来克服完全以对象为中心的导航方法的局限性,为一般设置导出一个安全的自主导航框架。该项目借鉴Marr的视觉处理框架,研究了一种以观众为中心的导航方法。通过以观众为中心的方法更紧密地连接感知和规划表示,新方法利用导航过程中获得的测量数据提供在线评估,以提高性能并生成关于未知场景导航的知识。该项目研究了以查看器为中心的模型表示用于局部规划的效果,以及将这种表示与反思性、体验性机器学习联系起来,以利用基于模型的规划子组件提高性能。该研究包括以下目标:1)验证以观众为中心的导航框架的鲁棒性,该框架结合了基于模型和基于深度学习的安全导航方法,具有认知和自适应操作;2)通过场景选择策略展示通过经验改进的增强推理能力;3)通过学习到的运动相对物理模型,将框架扩展到动态场景中,在观看者的参照系中对运动物体进行建模,以检测危险的相对运动轮廓。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AeriaLPiPS: A Local Planner for Aerial Vehicles with Geometric Collision Checking
AeriaLPiPS:具有几何碰撞检查功能的飞行器本地规划器
- DOI:10.1109/icra48891.2023.10160852
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Smith, Justin S.;Vela, Patricio
- 通讯作者:Vela, Patricio
Geometry of Radial Basis Neural Networks for Safety Biased Approximation of Unsafe Regions
- DOI:10.23919/acc55779.2023.10156278
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Ahmad Abuaish;Mohit Srinivasan;P. Vela
- 通讯作者:Ahmad Abuaish;Mohit Srinivasan;P. Vela
GPF-BG: A Hierarchical Vision-Based Planning Framework for Safe Quadrupedal Navigation
- DOI:10.1109/icra48891.2023.10160804
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Shiyu Feng;Ziyi Zhou;Justin S. Smith;M. Asselmeier;Ye Zhao;P. Vela
- 通讯作者:Shiyu Feng;Ziyi Zhou;Justin S. Smith;M. Asselmeier;Ye Zhao;P. Vela
Safe Hierarchical Navigation in Crowded Dynamic Uncertain Environments
- DOI:10.1109/cdc51059.2022.9992674
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Hongyi Chen;Shiyu Feng;Ye Zhao;Changliu Liu;P. Vela
- 通讯作者:Hongyi Chen;Shiyu Feng;Ye Zhao;Changliu Liu;P. Vela
egoTEB: Egocentric, Perception Space Navigation Using Timed-Elastic-Bands
egoTEB:使用定时弹性带的以自我为中心的感知空间导航
- DOI:10.1109/icra40945.2020.9196721
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Smith, Justin S.;Xu, Ruoyang;Vela, Patricio
- 通讯作者:Vela, Patricio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricio Vela其他文献
A concurrent learning approach to monocular vision range regulation of leader/follower systems
- DOI:
10.1007/s10514-024-10178-0 - 发表时间:
2024-10-17 - 期刊:
- 影响因子:4.300
- 作者:
Luisa Fairfax;Patricio Vela - 通讯作者:
Patricio Vela
First ovulation after childbirth: the effect of breast-feeding.
产后第一次排卵:母乳喂养的影响。
- DOI:
10.1016/0002-9378(72)90866-6 - 发表时间:
1972 - 期刊:
- 影响因子:9.8
- 作者:
Alfredo Perez;Alfredo Perez;Alfredo Perez;Patricio Vela;Patricio Vela;Patricio Vela;George Masnick;George Masnick;George Masnick;Robert G. Potter;Robert G. Potter;Robert G. Potter - 通讯作者:
Robert G. Potter
Vision-Based Tower Crane Tracking for Understanding Construction Activity
基于视觉的塔式起重机跟踪,用于了解施工活动
- DOI:
10.1061/(asce)cp.1943-5487.0000242 - 发表时间:
2014 - 期刊:
- 影响因子:6.9
- 作者:
Jun Yang;Patricio Vela;Jochen Teizer;Zhongke Shi - 通讯作者:
Zhongke Shi
Patricio Vela的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricio Vela', 18)}}的其他基金
Kickstarting Advances in Assistive and Rehabilitative Technologies
推动辅助和康复技术的进步
- 批准号:
2125017 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
FW-HTF-RM: Collaborative Research: Supervise It! Optimizing Intelligent Robot Integration Through Feedback to Workers and Supervisors
FW-HTF-RM:协作研究:监督!
- 批准号:
2026611 - 财政年份:2020
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
RI:Small:Exploiting the Evolving Conditioning of Bundle Adjustment for Robust, Adaptive Simultaneous Localization and Mapping
RI:Small:利用束调整的演化条件实现鲁棒、自适应同步定位和绘图
- 批准号:
1816138 - 财政年份:2018
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
A Geometric Control Framework for Enabling Behavior-Based Planning and Locomotion of Undulatory Robots
用于实现基于行为的波动机器人规划和运动的几何控制框架
- 批准号:
1562911 - 财政年份:2016
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
A Shared Autonomy Approach to Robotic Arm Assistance with Daily Activities
机械臂协助日常活动的共享自主方法
- 批准号:
1605228 - 财政年份:2016
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CPS: Synergy: Learning to Walk - Optimal Gait Synthesis and Online Learning for Terrain-Aware Legged Locomotion
CPS:协同:学习行走 - 地形感知腿部运动的最佳步态合成和在线学习
- 批准号:
1544857 - 财政年份:2015
- 资助金额:
$ 47万 - 项目类别:
Continuing Grant
Geometric Optimal Control for Locomotion of Biologically Inspired Robotic Systems
仿生机器人系统运动的几何优化控制
- 批准号:
1400256 - 财政年份:2014
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Automated Vision-Based Sensing for Site Operations Analysis
用于现场操作分析的基于视觉的自动化传感
- 批准号:
1030472 - 财政年份:2010
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Reciprocal Reconstruction and Recognition for Modeling of Constructed Facilities
已建设施建模的相互重构与识别
- 批准号:
1031329 - 财政年份:2010
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
CAREER: Observer Design for Intelligent Visual Tracking
职业:智能视觉跟踪的观察者设计
- 批准号:
0846750 - 财政年份:2009
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 47万 - 项目类别:
Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024882 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2024646 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024792 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
- 批准号:
2024670 - 财政年份:2021
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
- 批准号:
2024409 - 财政年份:2020
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
- 批准号:
2024435 - 财政年份:2020
- 资助金额:
$ 47万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
- 批准号:
2024615 - 财政年份:2020
- 资助金额:
$ 47万 - 项目类别:
Standard Grant