Direct Field Calibration for Model Simulations of Deep Excavations

深基坑模型模拟的直接现场校准

基本信息

项目摘要

Numerical modeling of geotechnical problems is used routinely in major construction projects. These models and simulations involve nonlinear analysis of staged construction for open-cut excavations, tunnels, slopes, and similar engineered structures. The most important and difficult part of these computer simulations is the representation of the constitutive behavior of the soil strata.In current engineering practice, the engineer selects an existing constitutive model and calibrates its parameters to match the results of few laboratory material tests. The tests do not generate information on important aspects of the soil behavior, which are relevant for a field problem. Often the results of numerical simulation using the calibrated constitutive models do not match the field measurements. Ad hoc methods are used to select and adjust the constitutive model and its properties to match field performance.We propose a novel, powerful and systematic method to calibrate the constitutive model of the soil behavior directly from field measurements. We will apply the autoprogressive method; a neural network based methodology that has been proposed by Ghaboussi and his co-workers, to the modeling of staged construction for a deep braced excavation. A neural network (NN) material model will represent the constitutive model of the soil behavior and will be calibrated using laboratory test and observed field behavior of excavations. Initially, the proposed methodology will be applied to synthetically generated "field measurements" from numerical simulations of deep excavations. The synthetic data will include wall lateral displacements and surface settlements. A classical bounding surface plasticity model will be used to represent clay behavior to generate the synthetic data. As a verification of the proposed approach, the soil behavior computed by the trained NN constitutive model can be compared to the classical soil model.The proposed methodology will then be applied to field measurements from deep excavations in Boston Central Artery/Tunnel CA/T project. The NN material will learn the constitutive model of the soil behavior directly from field measurements of deformations. The proposed approach can be applied to problems other than open-cut excavations. The approach will potentially greatly enhance the numerical modeling of geotechnical problems. Field observations and "local experience" can then be directly and systematically incorporated into numerical models.
岩土工程问题的数值模拟通常用于重大建设项目。 这些模型和模拟涉及非线性分析阶段施工明挖,隧道,边坡,和类似的工程结构。 这些计算机模拟中最重要和最困难的部分是土层本构特性的表示,在当前的工程实践中,工程师选择一个现有的本构模型,并校准其参数,以匹配少数实验室材料试验的结果。这些测试不会产生与现场问题相关的土壤行为重要方面的信息。通常,使用校准的本构模型的数值模拟的结果不匹配的现场测量。我们提出了一种新的、功能强大的、系统的方法来直接从现场测量数据中校准土壤行为的本构模型。我们将应用autoprogressive方法,神经网络为基础的方法,已提出的Ghaboussi和他的同事,建模的分阶段施工的深支撑开挖。 神经网络(NN)材料模型将代表土壤行为的本构模型,并将使用实验室测试和观察到的开挖现场行为进行校准。最初,所提出的方法将被应用到综合产生的“现场测量”从数值模拟深基坑。合成数据将包括墙的横向位移和表面沉降。将使用经典的边界面塑性模型来表示粘土行为以生成合成数据。将训练好的神经网络本构模型计算的土体性状与经典土体模型进行比较,验证了所提出的方法的有效性,并将其应用于波士顿中央动脉隧道CA/T工程深基坑的现场测量。 NN材料将直接从变形的现场测量中学习土壤行为的本构模型。所提出的方法可以适用于明挖以外的问题。该方法将大大提高岩土工程问题的数值模拟。实地观察和“当地经验”,然后可以直接和系统地纳入数值模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Youssef Hashash其他文献

Youssef Hashash的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Youssef Hashash', 18)}}的其他基金

GOALI/Collaborative Research: Future Underground Landscape - Learning from Large Excavations in a Complex Urban Environment
GOALI/合作研究:未来地下景观 - 从复杂城市环境中的大型挖掘中学习
  • 批准号:
    1917036
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Soil-Structure-Water Interaction Effects in Buried Reservoirs - Centrifuge and Numerical Modeling
合作研究:埋藏水库中的土壤-结构-水相互作用效应 - 离心机和数值模拟
  • 批准号:
    1762749
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: GEER Post Disaster Reconnaissance
合作研究:GEER 灾后勘察
  • 批准号:
    1825249
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
EAGER: Acoustic Wireless Sensors Communication in Soils
EAGER:土壤中的声学无线传感器通信
  • 批准号:
    1643025
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
GOALI: Performance of Deeep and Wide Excavations in Congested Urban Areas
目标:在拥挤的城市地区进行深、宽基坑挖掘的性能
  • 批准号:
    1101003
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Towards an Integrated Computational-Experimental Laboratory Testing Framework for Soil Behavior Characterization and Modeling
建立土壤行为表征和建模的综合计算实验实验室测试框架
  • 批准号:
    0856322
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
PECASE: Visualization of Constitutive Models in Geomechanics: A New Generalized Development and Learning Environment
PECASE:地质力学本构模型的可视化:新的广义开发和学习环境
  • 批准号:
    9984125
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Workshop on Research Needs and Opportunities for Urban Underground Facilities, June 13-17, 1999, Urbana, Illinois
城市地下设施研究需求和机遇研讨会,1999 年 6 月 13-17 日,伊利诺伊州厄巴纳
  • 批准号:
    9900089
  • 财政年份:
    1999
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
  • 批准号:
    21506066
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Field spectroradiometer suite for in-situ characterization of plants, soils and peats, and calibration of optical sensors and satellite observations
现场光谱辐射计套件,用于植物、土壤和泥炭的原位表征以及光学传感器和卫星观测的校准
  • 批准号:
    RTI-2023-00084
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Tools and Instruments
SHF: Small: Design Methodology for Efficient and Reliable Medium-Power Point-of-Load Converters via In-Field Built-in Self-Calibration
SHF:小型:通过现场内置自校准实现高效、可靠的中功率负载点转换器的设计方法
  • 批准号:
    1910380
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
In-field calibration camera for streetlight-based radar counting system accuracy enhancement for bike paths and roadways
用于基于路灯的雷达计数系统的现场校准摄像头,增强自行车道和道路的精度
  • 批准号:
    548581-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Collaborative Research: Hybrid Experimental-Numerical Methodology and Field Calibration for Characterization of Peak Wind Effects on Low-Rise Buildings and Their Appurtenances
合作研究:混合实验数值方法和现场校准,用于表征峰值风对低层建筑及其附属物的影响
  • 批准号:
    1825908
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Hybrid Experimental-Numerical Methodology and Field Calibration for Characterization of Peak Wind Effects on Low-Rise Buildings and Their Appurtenances
合作研究:混合实验数值方法和现场校准,用于表征峰值风对低层建筑及其附属物的影响
  • 批准号:
    1824995
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
New field-scale calibration for turbidity current impact modelling
用于浊流影响建模的新现场尺度校准
  • 批准号:
    NE/P009190/1
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
CPS: TTP Option: Synergy: Collaborative Research: Calibration of Personal Air Quality Sensors in the Field - Coping with Noise and Extending Capabilities
CPS:TTP 选项:协同:协作研究:现场校准个人空气质量传感器 - 应对噪音和扩展功能
  • 批准号:
    1446899
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: Calibration of Personal Air Quality Sensors in the Field - Coping with Noise and Extending Capabilities
CPS:TTP 选项:协同:协作研究:现场校准个人空气质量传感器 - 应对噪音和扩展功能
  • 批准号:
    1446912
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Astronomical field calibration for auroral photometry
极光光度测量的天文场校准
  • 批准号:
    430976-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
RAPID: Collection of Field Data from Haiti for Calibration of Seismic Vulnerability Indices
RAPID:收集海地现场数据以校准地震脆弱性指数
  • 批准号:
    1034834
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了