Topological and analytical invariants of singularities
奇点的拓扑和分析不变量
基本信息
- 批准号:0088950
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-15 至 2003-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0088950PI: Andas N\methiAbstract: An invariant of a normal surface singularity istopological if it is a 3-manifold invariant of its link, orequivalently, if it can be determined from the combinatorics of itsminimal resolution graph. The driving question of the proposal is: when are thegeometric genus and the Hilbert-Samuel function topological?The proposal has three parts. The main message of the first part is that for those Gorenstein singularities whose link is a rational homology sphere, the work of Artin and Laufer on rational, respectively on minimally elliptic singularities can be continued.The optimism is partly based on the author's recent work on Gorenstein elliptic singularities with rational homology sphere links. For these singularities the author proved among other facts that their geometric genusis topological: it is exactly the length of the ellipticsequence (in the sense of S. S.-T. Yau). The first step in any general investigation is the testing of the conjectures in some non-trivial particular cases. In the second part of the proposal the case of suspension singularities is discussed in more details.The third part of the proposal deals with higher dimensional generalizations of the Artin-Laufer program. Local analytic spaces are defined by locally defined analytic functions,in particular they carry a lot of analytic invariants. A very importantquestion in their classification is the following: can these analytic invariants be determined from the topological description of these spaces? In the case of complex surface singularities, the topological structureis determined from the link of the singularity which is anoriented 3-manifold. The goal of the project is to describe some of the analytic information of the singular space in terms of this 3-manifold(in those cases when it is possible).
摘要:法向曲面奇异形态的不变量,如果是其连杆的3流形不变量,则可以由其最小分辨率图的组合来确定。这个提议的驱动问题是:几何属和Hilbert-Samuel函数什么时候是拓扑的?该提案由三部分组成。第一部分的主要信息是,对于那些连杆是有理同调球的Gorenstein奇点,Artin和Laufer分别关于有理的最小椭圆奇点的工作可以继续下去。这种乐观部分是基于作者最近对具有有理同调球连杆的Gorenstein椭圆奇点的研究。对于这些奇点,作者在其他事实中证明了它们的几何属拓扑性:它正是椭圆序列的长度(在s.s.t意义上)。邱)。任何一般性研究的第一步都是在一些重要的特殊情况下检验猜想。在建议的第二部分,对悬性奇点的情况进行了更详细的讨论。该建议的第三部分涉及Artin-Laufer程序的高维推广。局部解析空间是由局部定义的解析函数定义的,特别是它们带有许多解析不变量。在它们的分类中有一个非常重要的问题是:这些解析不变量能否从这些空间的拓扑描述中确定?在复杂曲面奇异点的情况下,从奇异点的链路确定拓扑结构,奇异点是无取向的3流形。这个项目的目标是用这个3流形来描述奇异空间的一些分析信息(在可能的情况下)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andras Nemethi其他文献
Andras Nemethi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andras Nemethi', 18)}}的其他基金
Invariants of Normal Surface Singularities
法向表面奇点的不变量
- 批准号:
0304759 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Hodge-Theoretical Invariants of Singularities
奇点的霍奇理论不变量
- 批准号:
9622724 - 财政年份:1996
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Invariants of Singular Germs and Polynomials
数学科学:奇异胚和多项式的不变量
- 批准号:
9203482 - 财政年份:1992
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
非集中式网络供应链的协调优化与应用研究
- 批准号:70871105
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
- 批准号:
NE/Z503502/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
EA: Acquisition of analytical equipment for environmental biogeochemistry and mineralogy
EA:购置环境生物地球化学和矿物学分析设备
- 批准号:
2323242 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
A Semi-Analytical, Heterogeneous Multiscale Method for Simulation of Inverter-Dense Power Grids
一种用于逆变器密集电网仿真的半解析异构多尺度方法
- 批准号:
2329924 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
- 批准号:
2339596 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
- 批准号:
MR/Y034457/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CAREER: Data to Models (D2M), A Domain-Guided Translation of Sensor Data to Analytical Structural Models
职业:数据到模型 (D2M),传感器数据到分析结构模型的领域引导转换
- 批准号:
2340115 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant