Mathematical Sciences: Invariants of Singular Germs and Polynomials

数学科学:奇异胚和多项式的不变量

基本信息

项目摘要

This awards supports the research of Professor A. Nemethi to work in algebraic geometry. He will work on invariants of singularities and global polynomials. He plans to study the behavior of the signature for composed singularities. He hopes to see the connections between the signature of surface singularities and the Casson invariant of links. The research is in the field of algebraic geometry, one of the oldest parts of modern mathematics, but one which blossomed to the point where it has, in the past 10 years, solved problems that have stood for centuries. Originally, it treated figures defined in the plane by the simplest of equations, namely polynomials. Today, the field uses methods not only from algebra, but also from analysis and topology, and conversely it is extensively used in those fields. Moreover, it has proved itself useful in fields as diverse as physics, theoretical computer science, cryptography, coding theory and robotics.
该奖项支持A. Nemethi教授在代数几何方面的研究。他将研究奇异点的不变量和全局多项式。他计划研究组合奇点的签名行为。他希望看到表面奇点的特征和环的卡森不变量之间的联系。这项研究是在代数几何领域进行的,代数几何是现代数学中最古老的部分之一,但在过去的10年里,它已经发展到解决了几个世纪以来一直存在的问题的程度。最初,它用最简单的方程,即多项式来处理平面上定义的图形。今天,该领域不仅使用代数的方法,而且还使用分析和拓扑的方法,相反,它在这些领域中被广泛使用。此外,它已被证明在物理学、理论计算机科学、密码学、编码理论和机器人等多种领域都很有用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andras Nemethi其他文献

Andras Nemethi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andras Nemethi', 18)}}的其他基金

Invariants of Normal Surface Singularities
法向表面奇点的不变量
  • 批准号:
    0304759
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topological and analytical invariants of singularities
奇点的拓扑和分析不变量
  • 批准号:
    0088950
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hodge-Theoretical Invariants of Singularities
奇点的霍奇理论不变量
  • 批准号:
    9622724
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    0196235
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9996368
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9996227
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9704893
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
  • 批准号:
    9796130
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9626140
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Holomorphic Invariants of 3-Manifolds
数学科学:3-流形的全纯不变量
  • 批准号:
    9626544
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
  • 批准号:
    9529310
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
  • 批准号:
    9626404
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Geometry and Seiberg-Witten Invariants
数学科学:代数几何和 Seiberg-Witten 不变量
  • 批准号:
    9622681
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了