Distributed Computation, Numerical Methods, and Scientific Computing for Mathematics and Science Students in an Undergraduate Mathematics Department
本科数学系数理科学生的分布式计算、数值方法和科学计算
基本信息
- 批准号:0089045
- 负责人:
- 金额:$ 7.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-03-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical Sciences (21) This project tests the educational feasibility of introducing mathematics and science students to mathematical problems whose numerical solution is made possible through the use of distributed computation. Distributed computation, one form of parallel computation, is the process of finding numerical solutions to mathematical problems by distributing the computation over a cluster of processors connected together via an inexpensive network such as a high-speed ethernet network. Recent developments in low-cost computer networking technology have for the first time made the capabilities of distributed computation an economic possibility for mathematics departments at undergraduate institutions. The promise of parallel computing power at an inexpensive price has also led to distributed computation being used increasingly in many fields which have traditionally been clients of the mathematical sciences. The project develops a prototype consisting of educational materials for two newcourses in the current curriculum. The courses introduce students to the fundamentals of distributed computation with as few prerequisites as possible. The first course provides an introduction to numerical analysis and uses the native programming language of Mathematica. The second course introduces students to the mathematical problems that are solvable by means of distributed computation. It uses the native distributed computing capabilities of Mathematica and distributed computing libraries accessible through higher-level programming languages. The project includes development of a computing laboratory to support distributed computation projects.
数学科学(21)本项目测试了向数学和科学学生介绍数学问题的教育可行性,这些问题的数值解是通过使用分布式计算实现的。分布式计算,并行计算的一种形式,是通过将计算分布在通过廉价网络(如高速以太网)连接在一起的处理器集群上来寻找数学问题的数值解的过程。低成本计算机网络技术的最新发展首次使分布式计算的能力成为本科院校数学系的经济可能性。以低廉的价格提供并行计算能力的承诺也导致分布式计算在许多传统上是数学科学客户的领域中越来越多地使用。该项目开发了一个原型,包括现有课程中两个新课程的教材。这些课程向学生介绍分布式计算的基础知识,尽可能少的先决条件。第一门课程介绍了数值分析,并使用Mathematica的本地编程语言。第二门课程向学生介绍可通过分布式计算解决的数学问题。它使用Mathematica的本地分布式计算功能和可通过高级编程语言访问的分布式计算库。该项目包括开发一个计算实验室,以支持分布式计算项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Schneider其他文献
MoCoShoP: Supporting Mobile and Collaborative Shopping and Planning of Interiors
MoCoShoP:支持移动和协作购物以及室内规划
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Julian Seifert;Dennis Schneider;E. Rukzio - 通讯作者:
E. Rukzio
Extending Mobile Interfaces with External Screens
使用外部屏幕扩展移动界面
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Julian Seifert;Dennis Schneider;E. Rukzio - 通讯作者:
E. Rukzio
Uncertainty characterization for generation adequacy assessments – Including an application to the recent European energy crisis
发电充足性评估中的不确定性特征描述——以近期欧洲能源危机中的应用为例
- DOI:
10.1016/j.eneco.2025.108304 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:14.200
- 作者:
Maike Spilger;Dennis Schneider;Christoph Weber - 通讯作者:
Christoph Weber
Dennis Schneider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Schneider', 18)}}的其他基金
Enhancing the Educational Impact of Technology
增强技术的教育影响
- 批准号:
9751141 - 财政年份:1997
- 资助金额:
$ 7.41万 - 项目类别:
Standard Grant
Multivariable Calculus Using Mathematica
使用 Mathematica 进行多变量微积分
- 批准号:
9153249 - 财政年份:1991
- 资助金额:
$ 7.41万 - 项目类别:
Continuing Grant
"Mathematica" Notebooks for Calculus
“Mathematica”微积分笔记本
- 批准号:
9050757 - 财政年份:1990
- 资助金额:
$ 7.41万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
$ 7.41万 - 项目类别:
Continuing Grant
Formulation and numerical computation of the low frequency mean flow of fluids
流体低频平均流量的公式和数值计算
- 批准号:
463179503 - 财政年份:2021
- 资助金额:
$ 7.41万 - 项目类别:
WBP Fellowship
RUI: Commutativity in Numerical Computation
RUI:数值计算中的交换律
- 批准号:
2012216 - 财政年份:2020
- 资助金额:
$ 7.41万 - 项目类别:
Standard Grant
Development of efficient arbitrary precision numerical linear computation library optimized for multi-core CPUs
开发针对多核CPU优化的高效任意精度数值线性计算库
- 批准号:
20K11843 - 财政年份:2020
- 资助金额:
$ 7.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sign-change structure analysis for reaction-diffusion models based on rigorous numerical computation
基于严格数值计算的反应扩散模型符号变化结构分析
- 批准号:
19K14601 - 财政年份:2019
- 资助金额:
$ 7.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spatial-Temporal Modeling and Computation for Physical Processes and Numerical Simulations
物理过程和数值模拟的时空建模和计算
- 批准号:
1916208 - 财政年份:2019
- 资助金额:
$ 7.41万 - 项目类别:
Continuing Grant
Numerical computation of the human voice source
人声源的数值计算
- 批准号:
391215328 - 财政年份:2018
- 资助金额:
$ 7.41万 - 项目类别:
Research Grants
Analysis of a global-in-time solution for reaction-diffusion system using verified numerical computation
使用经过验证的数值计算分析反应扩散系统的全局实时解
- 批准号:
18K13462 - 财政年份:2018
- 资助金额:
$ 7.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Numerical simulations of uncertainty quantification and multiscale computation
不确定性量化和多尺度计算的数值模拟
- 批准号:
RGPIN-2014-05664 - 财政年份:2018
- 资助金额:
$ 7.41万 - 项目类别:
Discovery Grants Program - Individual
Painleve equations: analytical properties and numerical computation
Painleve 方程:分析特性和数值计算
- 批准号:
EP/P026532/1 - 财政年份:2017
- 资助金额:
$ 7.41万 - 项目类别:
Research Grant