Tropical Hurwitz loci
热带 Hurwitz 位点
基本信息
- 批准号:144856147
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Enumerative geometry is a part of algebraic geometry in which one counts geometric objects satisfying certain conditions, e.g. plane curves passing through given points with assigned multiplicities. These questions are typically easy to formulate, but hard to solve with elementary techniques. An often succesful approach consists in translating an enumerative geometric question into an intersection problem on some appropriate moduli space. This is a reason why enumerative geometry has been very fruitful in pushing new developments in algebraic geometry and in making connections to other fields such as symplectic geometry or string theory.Tropical geometry is a recent and quickly growing field in which algebro-geometric objects are degenerated to certain piecewise linear combinatorial objects called tropical varieties. In spite of the degeneration, many algebro-geometric invariants carry over to the tropical world. In these cases tropical geometry is an effective computational tool to study problems in algebraic geometry. It also has connections to other fields such as optimization or biomathematics.Tropical geometry had particular success in the study of enumerative questions. The field of tropical enumerative geometry was pioneered by Mikhalkin with his celebrated Correspondence Theorem relating classical numbers of plane curves to their tropical counterparts.This proposal suggests to study questions at the interplay of enumerative geometry and tropical geometry, aiming at results in both fields as well as at a deeper understanding of their connections. The main object of interest are loci of ramified covers of the projective line called (double) Hurwitz loci. A 0-dimensional Hurwitz locus is classically known as Hurwitz number.Tropical analogues of double Hurwitz numbers have been introduced by Cavalieri, Johnson and myself.Double Hurwitz numbers have an interesting piecewise polynomial structure in the entries of the fixed ramification data. The tropical approach was helpful to discover new features of this piecewise polynomial structure.In this proposal, I suggest to extent the picture to higher-dimensional cycles in the moduli space of curves parametrizing certain ramified covers. I intend to study - classical and tropical - Hurwitz loci, their piecewise polynomial structure and wall-crossing formulas.The double-tracked approach - classical and tropical - serves two purposes: first, we can use the whole machinery of both methods to gain maximal outcome. Second, I hope to learn more about the connection between classical and tropical geometry by thouroughly investigating the two sides of the theory of Hurwitz loci. In addition, the study of Hurwitz loci and their connections to their tropical counterparts will advance the study of tropical moduli spaces and their intersection theory in general and might contribute to a more geometric understanding of the wall-crossing formulas for double Hurwitz loci.
枚举几何是代数几何的一部分,其中计算满足某些条件的几何对象,例如通过指定重数的给定点的平面曲线。这些问题通常很容易公式化,但很难用基本技术解决。一个经常成功的方法是将一个枚举几何问题转化为一个适当的模空间上的交集问题。这就是为什么枚举几何在推动代数几何的新发展和与其他领域如辛几何或弦理论的联系方面非常富有成效的原因。热带几何是一个最近发展迅速的领域,其中代数几何对象退化为某些称为热带簇的分段线性组合对象。尽管退化,许多代数几何不变量结转到热带世界。在这些情况下,热带几何是研究代数几何问题的有效计算工具。它也与其他领域如最优化或生物数学有联系。热带几何在计数问题的研究中取得了特别的成功。热带枚举几何领域是由Mikhalkin开创的,他的著名对应定理将经典的平面曲线数与其热带对应数联系起来。这一建议研究枚举几何和热带几何相互作用的问题,旨在两个领域的结果以及更深入地理解它们的联系。感兴趣的主要对象是被称为(双)Hurwitz轨迹的射影线的分支覆盖的轨迹。一个0维Hurwitz轨迹经典地称为Hurwitz数,Cavalieri,约翰逊和我已经引入了双Hurwitz数的热带类似物,双Hurwitz数在固定分歧数据的项中具有有趣的分段多项式结构.热带的方法是有帮助的,发现新的功能,这种分段多项式structure.In这个建议,我建议延长图片到高维循环的模空间中的曲线参数化某些分歧覆盖。我打算研究--经典的和热带的-- Hurwitz轨迹、它们的分段多项式结构和跨壁公式。双轨方法--经典的和热带的--有两个目的:首先,我们可以使用这两种方法的整个机制来获得最大结果。其次,通过对赫尔维茨轨迹理论的两个方面的深入研究,希望能进一步了解古典几何与热带几何之间的联系。此外,研究赫尔维茨轨迹及其与热带对应物的联系将推进热带模空间及其相交理论的研究,并可能有助于对双赫尔维茨轨迹的过壁公式有更多的几何理解。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polynomiality, wall crossings and tropical geometry of rational double Hurwitz cycles
有理双赫尔维茨循环的多项式、穿墙和热带几何
- DOI:10.1016/j.jcta.2013.05.010
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Aaron Bertram;Renzo Cavalieri;Hannah Markwig
- 通讯作者:Hannah Markwig
Tropical covers of curves and their moduli spaces
曲线的热带覆盖层及其模空间
- DOI:10.1142/s0219199713500454
- 发表时间:2013
- 期刊:
- 影响因子:1.6
- 作者:Arne Buchholz;Hannah Markwig
- 通讯作者:Hannah Markwig
Combinatorics of tropical Hurwitz cycles
热带赫尔维茨循环的组合
- DOI:10.1007/s10801-015-0615-0
- 发表时间:2015
- 期刊:
- 影响因子:0.8
- 作者:Simon Hampe
- 通讯作者:Simon Hampe
Tropical real Hurwitz numbers
热带实赫尔维茨数
- DOI:10.1007/s00209-015-1498-4
- 发表时间:2015
- 期刊:
- 影响因子:0.8
- 作者:Hannah Markwig;Johannes Rau
- 通讯作者:Johannes Rau
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Hannah Markwig其他文献
Professorin Dr. Hannah Markwig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Hannah Markwig', 18)}}的其他基金
Tropicalizations of moduli spaces of curves and covers
曲线和覆盖的模空间的热带化
- 批准号:
269871039 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Arithmetic counts of bitangents to plane quartics by means of tropical geometry
利用热带几何对平面四次方程的双切线进行算术计数
- 批准号:
504195479 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Dirichlet级数、Hurwitz型Dirichlet级数及相关问题研究
- 批准号:12371007
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
二次型复合中Hurwitz问题与Yuzvinsky猜想的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Gr-范畴中的代数与平方和的Hurwitz问题
- 批准号:11971181
- 批准年份:2019
- 资助金额:53.0 万元
- 项目类别:面上项目
G-Hurwitz数的chamber结构与穿墙公式
- 批准号:11401571
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
G-Hurwitz数,colored cut-and-join方程和镜像对称
- 批准号:11326074
- 批准年份:2013
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
树、格及Hurwitz排列中的计数问题
- 批准号:10801053
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ブレイドシステムのHurwitz同値不変量の列の構成と曲面ブレイドへの応用
叶片系统中Hurwitz等价不变量序列的构造及其在弯曲叶片中的应用
- 批准号:
19K03508 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial Interpretations of Monotone Hurwitz Numbers
单调赫维茨数的组合解释
- 批准号:
454318-2014 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
"Hurwitz spaces, Humbert schemes and modular curves"
“赫尔维茨空间、亨伯特方案和模曲线”
- 批准号:
105361-2012 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
"Hurwitz spaces, Humbert schemes and modular curves"
“赫尔维茨空间、亨伯特方案和模曲线”
- 批准号:
105361-2012 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Combinatorial Interpretations of Monotone Hurwitz Numbers
单调赫维茨数的组合解释
- 批准号:
454318-2014 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Hurwitz spaces of low genera
低属 Hurwitz 空间
- 批准号:
482465-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
US-Canada Planning Visit On the Hurwitz Spaces and Isomonodromy Deformations
美加计划访问赫尔维茨空间和等单性变形
- 批准号:
1444147 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Combinatorial Interpretations of Monotone Hurwitz Numbers
单调赫维茨数的组合解释
- 批准号:
454318-2014 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral