Tropical Singularities
热带奇点
基本信息
- 批准号:213669991
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In tropical geometry, algebraic varieties are degenerated to polyhedral complexes called tropical varieties. In spite of the degeneration, many properties of an algebraic variety can be read off its tropical counterpart, and many theorems continue to hold on the tropical side. Tropical geometry thus provides an approach to study questions in algebraic geometry by means of discrete mathematics and combinatorics. Tropical geometry has been successfully applied to computational problems and problems in enumerative geometry, in particular real enumerative questions. To really make good use of the new tool, many questions of translating nature have to be answered. The central question for this project is: what is the correct translation of the concept of a singularity to the tropical world? This question is quite natural to ask and has consequently interested several authors recently ([3], [4], [13]). The fact that it is hard to answer in general makes it even more intriguing. The aim of this project is to considerably improve the understanding of tropical singularities, to apply the results to questions in enumerative geometry, and to investigate the connections of this subject to questions in combinatorics.
在热带几何中,代数簇退化为称为热带簇的多面体复合体。尽管有退化,代数簇的许多性质可以从热带对应的代数簇中读出,许多定理继续适用于热带方面。因此,热带几何提供了一种通过离散数学和组合学来研究代数几何问题的方法。热带几何已被成功地应用于计算问题和计数几何中的问题,特别是实计数问题。要真正利用好这一新工具,必须回答许多关于翻译性质的问题。这个项目的中心问题是:对热带世界来说,奇点概念的正确翻译是什么?这个问题是很自然地提出的,因此最近引起了几位作者的兴趣([3]、[4]、[13])。这个问题很难笼统地回答,这让它变得更加耐人寻味。这个项目的目的是显著提高对热带奇点的理解,将结果应用于计数几何中的问题,并调查这一主题与组合学中的问题的联系。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformation of tropical Hirzebruch surfaces and enumerative geometry
热带 Hirzebruch 曲面的变形和枚举几何
- DOI:10.1090/jag/671
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Erwan Brugallé ;Hannah Markwig
- 通讯作者:Hannah Markwig
How to Repair Tropicalizations of Plane Curves Using Modifications
如何使用修改来修复平面曲线的热带化
- DOI:10.1080/10586458.2015.1048013
- 发表时间:2016
- 期刊:
- 影响因子:0.5
- 作者:Marίa Angélica Cueto;Hannah Markwig
- 通讯作者:Hannah Markwig
Enumeration of complex and real surfaces via tropical geometry
通过热带几何枚举复杂和真实的表面
- DOI:10.1515/advgeom-2017-0024
- 发表时间:2018
- 期刊:
- 影响因子:0.5
- 作者:Hannah Markwig;Thomas Markwig;Eugenii Shustin
- 通讯作者:Eugenii Shustin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Hannah Markwig其他文献
Professorin Dr. Hannah Markwig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Hannah Markwig', 18)}}的其他基金
Tropicalizations of moduli spaces of curves and covers
曲线和覆盖的模空间的热带化
- 批准号:
269871039 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Arithmetic counts of bitangents to plane quartics by means of tropical geometry
利用热带几何对平面四次方程的双切线进行算术计数
- 批准号:
504195479 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
- 批准号:
2422557 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
- 批准号:
DP240101934 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
- 批准号:
2907441 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
- 批准号:
2247702 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Interaction of singularities and number theory
奇点与数论的相互作用
- 批准号:
23H01070 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship