Collaborative Research: Magnetic Photonic Crystals

合作研究:磁性光子晶体

基本信息

  • 批准号:
    0091648
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-09-15 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative project between Michigan Technological University (MTU) and SouthwestTexas State University (SWT) focuses on the fabrication and testing of photonic crystals in magneticoxides for novel integrated photonic device prototyping. The project responds to the growing interest inphotonic crystals for device applications based on their unique optical band gap properties. While variousnovel optical band-gap structures have been fabricated in non-magnetic dielectric media for highly efficientwaveguiding, filtering and resonator applications, very little work has been done on photonic crystals inmagnetic systems. One-dimensional structures have received some attention, although this work is stillvery limited and remains mostly theoretical. Higher dimensional systems have not been investigated at all.Given the novelty of the field of magnetic systems in photonic crystal applications, the proposed projectwill consist of a one-year exploratory effort to assess the applicability of magnetic materials in photonicband-gap structures.The non-reciprocal properties of magnetic oxides, such as yttrium iron garnet (YIG), make thesematerials a unique choice for optical isolator and circulator fabrication. Optical fiber telecommunicationshave developed to the point where the monolithic integration of different optical components is a seriousissue to reduce costs in local area networks and long-distance data transmittal. In particular, noisesuppression at the source is an important driver for the development of on-chip optical isolators. However,conventional systems utilizing non-planar geometries are both bulky and expensive. Photonic crystalstructures provide a novel alternative to address this problem since they can significantly enhance the Kerrand Faraday response, making it possible to build smaller and cheaper isolators and circulatorsA program to develop photonic crystal devices based on magnetic systems is a high-risk high-payoff undertaking. It is high-risk because the use of photonic crystals in magnetic systems is a completelynew and virgin field. Most of the work developed thus far has been theoretical, although a fewexperimental successes have been reported. Certain aspects of the sputtering work required for thefabrication of one-dimensional magnetic photonic crystals remain partly unexplored and may requireparticularly careful fine-tuning of the sputtering conditions. In particular, special attention must be paid tothe formation of highly smooth interfaces in the magnetic photonic crystal stack given the large number oflayers that make up these structures.The essence of the innovation presented by the use of photonic crystals in magneto-optic isolatorsis that of a tremendous reduction in length in the polarization rotator afforded by a correspondingenhancement in Faraday rotation. However, the impact of this program, if successful, would not be just thedevelopment of ultra-short isolators but the enabling of actual on-chip commercial integration of magneto-optic isolators. This is because the integration of these devices onto planar structures has been hindered bythe presence of linear birefringence in optical waveguides. The difficulty arises because waveguidedimensions comparable to the optical wavelength induce a phase mismatch between transverse-electric(TE) and transverse-magnetic (TM) modes, degrading the isolation efficiency. The qualitative reduction indevice length envisaged by the use of photonic crystal structures promises to eliminate the phase matchingstumbling block to the integration of isolators into photonic circuits. In that sense, this program has thepotential to revolutionize optical communications technology, by allowing the on-chip fabrication of acritical component for communications systems.
密歇根理工大学(MTU)和西南德克萨斯州立大学(SWT)之间的这一合作项目的重点是在磁氧化物中制造和测试光子晶体,用于新型集成光子器件原型。该项目响应日益增长的兴趣在光子晶体器件应用的基础上,其独特的光学带隙特性。虽然各种新颖的光学带隙结构已被制作在非磁性介质中,用于高效的波导,滤波和谐振器的应用,很少有工作已经做了磁性系统中的光子晶体。一维结构已经受到了一些关注,尽管这项工作仍然非常有限,并且仍然主要是理论上的。由于磁性材料在光子晶体中的应用是一个新奇的领域,因此本研究计划将对磁性材料在光子带隙结构中的应用进行为期一年的探索性研究,磁性氧化物,如钇铁石榴石(YIG)的非互易特性,使这些材料成为制造光隔离器和环行器的独特选择。光纤互连已经发展到这样的程度,即不同光学元件的单片集成是降低局域网和长距离数据传输成本的一个重要问题。特别是,在源端的噪声抑制是片上光隔离器发展的重要驱动力。然而,利用非平面几何形状的常规系统既笨重又昂贵。光子晶体结构为解决这一问题提供了一种新的选择,因为它们可以显著增强Kerrand法拉第响应,使得建造更小更便宜的隔离器和环行器成为可能。这是高风险的,因为光子晶体在磁性系统中的使用是一个全新的领域。迄今为止,大部分的工作都是理论上的,尽管有一些实验上的成功报道。制造一维磁性光子晶体所需的溅射工作的某些方面仍然部分未被探索,并且可能需要特别仔细地微调溅射条件。特别是,必须特别注意在磁性光子晶体叠层中形成高度光滑的界面,因为这些结构是由大量的层组成的。在磁光隔离器中使用光子晶体所带来的创新的本质是,通过相应地增强法拉第旋转,极大地减少了偏振旋转器的长度。然而,该计划的影响,如果成功的话,将不仅仅是超短隔离器的发展,而是实现磁光隔离器的实际片上商业集成。这是因为这些器件在平面结构上的集成受到光波导中线性双折射的阻碍。困难的出现是因为波导尺寸与光波长相当,导致横电(TE)和横磁(TM)模式之间的相位失配,降低了隔离效率。通过使用光子晶体结构,器件长度的定性减少有望消除将隔离器集成到光子电路中的相位匹配绊脚石。从这个意义上说,该计划有可能彻底改变光通信技术,通过允许通信系统的关键组件的芯片制造。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miguel Levy其他文献

Sign of the <em>hZZ</em> coupling and implication for new physics
  • DOI:
    10.1016/j.physletb.2024.139002
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dipankar Das;Anirban Kundu;Miguel Levy;Anugrah M. Prasad;Ipsita Saha;Agnivo Sarkar
  • 通讯作者:
    Agnivo Sarkar
Optical excitation of multiple standing spin modes in 3D optomagnonic nanocavities
3D 光磁纳米腔中多种自旋模式的光激发
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Ignatyeva;D. Krichevsky;D. Karki;A. Kolosvetov;Polina E. Zimnyakova;A. Shaposhnikov;V. Berzhansky;Miguel Levy;A. Chernov;V. Belotelov
  • 通讯作者:
    V. Belotelov
Photoluminescence of heavily doped, compensated Si:P,B.
重掺杂、补偿的 Si:P,B 的光致发光。
  • DOI:
    10.1103/physrevb.49.1677
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miguel Levy;P. Y. Yu;Youzhu Zhang;M. Sarachik
  • 通讯作者:
    M. Sarachik
Magnetophotonics: From Theory to Applications (Springer Series in Materials Science)
磁光子学:从理论到应用(材料科学中的施普林格系列)
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mitsuteru Inoue;Miguel Levy;Alexander V. Baryshev
  • 通讯作者:
    Alexander V. Baryshev
Sign of the emhZZ/em coupling and implication for new physics
emhzz/em耦合的迹象以及对新物理学的影响
  • DOI:
    10.1016/j.physletb.2024.139002
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Dipankar Das;Anirban Kundu;Miguel Levy;Anugrah M. Prasad;Ipsita Saha;Agnivo Sarkar
  • 通讯作者:
    Agnivo Sarkar

Miguel Levy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miguel Levy', 18)}}的其他基金

Degenerate Bandgaps in Magneto-Photonic Crystals and Magneto-Photonic Crystal Biochemical Sensors
磁光子晶体和磁光子晶体生化传感器中的简并带隙
  • 批准号:
    0856650
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Materials World Network: Nonlinear Magnetophotonic Crystals
材料世界网:非线性磁光子晶体
  • 批准号:
    0709669
  • 财政年份:
    2007
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
A Nanomagnetic Route to Bias-Magnet-Free On-Chip Faraday Rotators
无偏磁片上法拉第旋转器的纳米磁路线
  • 批准号:
    0520814
  • 财政年份:
    2005
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Planar Magnetic Photonic Crystals
合作研究:平面磁性光子晶体
  • 批准号:
    0115315
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303580
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305402
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
  • 批准号:
    2233592
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300156
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: The history of the Earth's magnetic field strength over the last five million years: Filling in the southern hemisphere gap
合作研究:NSFGEO-NERC:过去五百万年地球磁场强度的历史:填补南半球的空白
  • 批准号:
    2245629
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
  • 批准号:
    2233375
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Discovery of novel magnetic materials through pseudospin control
合作研究:DMREF:通过赝自旋控制发现新型磁性材料
  • 批准号:
    2323857
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
  • 批准号:
    2307699
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了