CAREER: A New Approach For Analysis of RNA Dynamics During Pre-mRNA Splicing

职业生涯:一种分析 Pre-mRNA 剪接过程中 RNA 动力学的新方法

基本信息

  • 批准号:
    0093003
  • 负责人:
  • 金额:
    $ 53.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-02-01 至 2006-10-31
  • 项目状态:
    已结题

项目摘要

0093003 Erik Sontheimer It has been known for over two decades that functional messenger RNA is not a raw copy of DNA but is instead a highly edited molecule wherein non-functional portions (introns) are precisely "spliced" away. The faithful expression of genetic information requires that intron removal occur with remarkable accuracy. The splicing machinery consists of five RNA molecules that (along with several dozen proteins) comprise an extremely dynamic complex in which multiple RNA interactions form, break, and rearrange. Despite intensive efforts, the mechanistic principles that underlie this structural plasticity have remained obscure, largely because of the inability to control individual rearrangements directly and specifically. In the research component of this CAREER project, the investigator will develop a new biochemical technique that allows the reversible covalent fixation of RNA structure within a complex protein-containing environment. This approach takes advantage of the high affinity between arsenic and sulfur atoms. Incorporation of two sulfur atoms into each strand of an RNA duplex will generate a four-sulfur binding site for a compound containing two arsenic atoms ("biarsenical"). The investigator will then develop biarsenical compounds that can crosslink the modified RNAs in a way that can be reversed upon addition of an excess of antidote containing two sulfur atoms. Once the crosslinking system has been developed and characterized, it will be used to trap dynamic RNA interactions within the splicing machinery. This will then permit the biochemical characterization of splicing complexes that are stalled at discrete stages of the splicing pathway. The reversibility of the crosslinks will allow the investigator to define the roles of enzymes thought to control RNA rearrangements in the spliceosome, including proteins previously implicated in promoting accurate splice site selection. The techniques developed in the course of this project will be applicable to many other systems that involve nucleic acid rearrangements. Over the past twenty years, it has also become clear that many central workings of the cell involve large macromolecular assemblies that dwarf many of the enzymes that have been so well characterized structurally and mechanistically. To understand gene expression at a similar depth, the challenges presented by this size and complexity must be faced. Much of the biochemistry curriculum required of sophomore- and junior-level biology students provides a solid grounding in relatively simple and well-defined biochemical systems, predominantly from intermediary metabolism. The processes of eukaryotic gene expression, however, have often been taught in a more descriptive and less quantitative and mechanistic fashion. As the field of gene expression progresses beyond the "parts list" phase, undergraduate biochemistry courses should reflect this, to incorporate the most exciting current research and to spur interest in addressing some of the great challenges that remain. In the educational component of this CAREER award, the investigator will develop a junior-level biochemistry course that (as before) covers the fundamentals of macromolecular structure, function, and energetics, but that draws many of its illustrations and examples from areas of molecular and cell biology that are the subjects of intense current investigation. The intended goal of this approach is to emphasize the current excitement in the field, to prepare students for the exploding opportunities that await biochemists in the post-genome era, and to impress upon them the creativity and interdisciplinarity that will be necessary to tackle the workings of larger and more complex systems.
[00:9 . 03] Erik Sontheimer二十多年来,人们已经知道功能性信使RNA不是DNA的原始副本,而是一种高度编辑的分子,其中非功能部分(内含子)被精确地“剪接”掉了。遗传信息的忠实表达要求内含子的去除具有显著的准确性。剪接机制由五个RNA分子(连同几十个蛋白质)组成一个极其动态的复合体,在这个复合体中,多个RNA相互作用形成、断裂和重新排列。尽管付出了巨大的努力,但这种结构可塑性背后的机制原理仍然模糊不清,这主要是因为无法直接和具体地控制个体的重排。在这个CAREER项目的研究部分,研究者将开发一种新的生化技术,允许RNA结构在复杂的含蛋白质环境中进行可逆的共价固定。这种方法利用了砷和硫原子之间的高亲和力。将两个硫原子结合到RNA双链的每条链中,将为含有两个砷原子的化合物(“双砷”)生成一个四硫结合位点。然后,研究人员将开发双砷化合物,这种化合物可以通过一种方式将修饰的rna交联,这种方式可以在添加过量含有两个硫原子的解毒剂后逆转。一旦交联系统被开发和表征,它将用于捕获剪接机制内的动态RNA相互作用。然后,这将允许在剪接途径的离散阶段停止剪接复合物的生化表征。交联的可逆性将允许研究者定义被认为控制剪接体中RNA重排的酶的作用,包括先前涉及促进准确剪接位点选择的蛋白质。本项目开发的技术将适用于涉及核酸重排的许多其他系统。在过去的二十年里,人们已经清楚地认识到,细胞的许多核心工作都涉及到大分子组装,这使得许多在结构和机械上已经被很好地表征的酶相形见绌。为了在类似的深度上理解基因表达,必须面对这种规模和复杂性所带来的挑战。对于大二和大三的学生来说,大部分生物化学课程都为他们提供了相对简单和定义明确的生物化学系统的坚实基础,这些系统主要来自中间代谢。然而,真核生物基因表达的过程常常以一种更多的描述性和较少的定量和机械性的方式来教授。随着基因表达领域的发展超越了“部分清单”阶段,本科生物化学课程应该反映这一点,纳入当前最令人兴奋的研究,并激发人们对解决一些仍然存在的重大挑战的兴趣。在这个职业奖的教育部分,研究者将开发一门初级生物化学课程,(和以前一样)涵盖大分子结构、功能和能量学的基础知识,但它从分子和细胞生物学领域吸取了许多插图和例子,这些领域是当前研究的热点。这种方法的预期目标是强调该领域当前的兴奋,让学生为后基因组时代等待生物化学家的爆炸性机会做好准备,并给他们留下创造性和跨学科性的印象,这将是解决更大、更复杂系统工作所必需的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Sontheimer其他文献

Erik Sontheimer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
  • 批准号:
    2422750
  • 财政年份:
    2024
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Standard Grant
CAREER: Developing New Scientific Instruments for Classroom Observation: A Multi-modal Machine Learning Approach
职业:开发用于课堂观察的新科学仪器:多模式机器学习方法
  • 批准号:
    2046505
  • 财政年份:
    2021
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
  • 批准号:
    1942467
  • 财政年份:
    2020
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Standard Grant
CAREER: Mechanical unfolding and refolding of multidomain proteins as a new signaling mechanism, studied using a novel single molecule approach
职业:使用新型单分子方法研究多域蛋白的机械展开和重折叠作为一种新的信号传导机制
  • 批准号:
    1846143
  • 财政年份:
    2019
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Continuing Grant
A new approach to benchmarking the skills of companies and their employees, which then delivers the shortest and most efficient path to learning and career progression.
一种对公司及其员工的技能进行基准测试的新方法,从而提供最短、最有效的学习和职业发展路径。
  • 批准号:
    33050
  • 财政年份:
    2019
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Collaborative R&D
CAREER: Organic Molecular Paleohypsometry: A new approach to quantifying the topographic history of the most rapidly eroding mountain belt on Earth
职业:有机分子古地势测量:一种量化地球上侵蚀最迅速的山脉地形历史的新方法
  • 批准号:
    1752815
  • 财政年份:
    2018
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Continuing Grant
CAREER: Distribution Resource Elasticity: A New Hierarchical Approach for On-Demand Distribution Platforms
职业:分发资源弹性:按需分发平台的新分层方法
  • 批准号:
    1751801
  • 财政年份:
    2018
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Standard Grant
CAREER: A New Approach to Particle Astrophysics with VERITAS and Multi-wavelength Data
职业生涯:利用 VERITAS 和多波长数据进行粒子天体物理学的新方法
  • 批准号:
    1555161
  • 财政年份:
    2016
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Continuing Grant
CAREER: Toward a mechanistic and quantitative understanding of oxidative conversion of biorefinery lignin to open chain hydrocarbon fuel - a new approach to dispel lignin myth
职业:对生物精炼木质素氧化转化为开链碳氢化合物燃料的机制和定量理解——消除木质素神话的新方法
  • 批准号:
    1454575
  • 财政年份:
    2015
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Standard Grant
CAREER: Strengthening the Predictive Ability for New Particle Formation--A Combined Field, Data Analysis, and Modeling Approach
职业:加强新粒子形成的预测能力——结合现场、数据分析和建模的方法
  • 批准号:
    0748602
  • 财政年份:
    2008
  • 资助金额:
    $ 53.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了