CAREER: Machine Learning with Rich Data Sources and Interrelated Tasks

职业:具有丰富数据源和相关任务的机器学习

基本信息

  • 批准号:
    0093016
  • 负责人:
  • 金额:
    $ 48.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-05-01 至 2007-04-30
  • 项目状态:
    已结题

项目摘要

Now that numerous genomes have been sequenced, a significant challenge confronting biologists is to determine the functions of the genes contained in these genomes. One aspect of understanding the function of a given gene is to determine the conditions under which it is active, the mechanisms responsible for controlling its level of activity, and the interactions it has with other genes. Toward this end, in the current project the PI will develop new computational approaches to uncovering the regulatory mechanisms and interactions of genes in a given organism. In particular, the focus is on developing new machine learning methods which are able to predictively identify various regulatory elements of a genome, using well-characterized aspects of the genome as training data. The expected impact of this research is twofold: it will produce new methods and software that can be applied by molecular biologists to gain insight into the regulatory apparatus of the cell; and it will advance the state of the art in machine learning by developing new methods for problem domains that involve (i) multiple inter-related learning tasks, (ii) rich and varied sources of data including sequence and text data, and (iii) the need for rich representation languages, such as stochastic context-free grammars and relational rules.
既然已经对许多基因组进行了测序,生物学家面临的一个重大挑战是确定这些基因组中包含的基因的功能。了解特定基因功能的一个方面是确定其活动的条件,控制其活动水平的机制,以及它与其他基因的相互作用。为此,在目前的项目中,PI将开发新的计算方法来揭示特定生物体中基因的调节机制和相互作用。特别是,重点是开发新的机器学习方法,这些方法能够预测识别基因组的各种调控元件,使用基因组的良好特征方面作为训练数据。这项研究的预期影响是双重的:它将产生新的方法和软件,分子生物学家可以应用这些方法和软件来深入了解细胞的调节机制;它将通过开发涉及(i)多个相互关联的学习任务的问题域的新方法,(ii)丰富多样的数据来源,包括序列和文本数据,以及(iii)对丰富的表示语言的需求,例如随机上下文无关语法和关系规则,来推进机器学习的最新技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Craven其他文献

Pulmonary function in three year old children: Effect of exposure and sensitization to indoor allergens
  • DOI:
    10.1016/s0091-6749(02)81657-8
  • 发表时间:
    2002-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lesley Lowe;Clare S Murray;Adnan Custovic;Mark Craven;Patricia Kissen;Ashley A Woodcock
  • 通讯作者:
    Ashley A Woodcock
Cumulative exposure to indoor allergens: Association with sensitisation and respiratory symptoms in the first 3 years of life
  • DOI:
    10.1016/s0091-6749(02)81661-x
  • 发表时间:
    2002-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Clare S Murray;Patricia Kissen;Mark Craven;Bridget Simpson;Adnan Custovic;Ashley A Woodcock
  • 通讯作者:
    Ashley A Woodcock
ASSOCIATION OF ALLELES FROM INFLAMMATORY, VASO-ARCHITECTURE, AND COAGULATION PATHWAYS WITH CLINICAL CHARACTERISTICS OF A DEEP VEIN THROMBOSIS
  • DOI:
    10.1016/s0735-1097(10)61607-5
  • 发表时间:
    2010-03-09
  • 期刊:
  • 影响因子:
  • 作者:
    Deanna S. Cross;Mark Craven;Steven Yale
  • 通讯作者:
    Steven Yale

Mark Craven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Craven', 18)}}的其他基金

RI: Small: Active Learning with Rich Query Types on Networks and Trees
RI:小型:网络和树上具有丰富查询类型的主动学习
  • 批准号:
    1218880
  • 财政年份:
    2012
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
  • 批准号:
    2337678
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
  • 批准号:
    2339381
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
  • 批准号:
    2340194
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: From Dirty Data to Fair Prediction: Data Preparation Framework for End-to-End Equitable Machine Learning
职业:从脏数据到公平预测:端到端公平机器学习的数据准备框架
  • 批准号:
    2341055
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 48.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了