CAREER: Using Photonic Crystals to Control the Emission of Rare Earth-Doped Semiconducting Polymers
职业:利用光子晶体控制稀土掺杂半导体聚合物的发射
基本信息
- 批准号:0093502
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-02-01 至 2006-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light-emitting diodes (LEDs) made with semiconducting (conjugated) polymersnow have quantum efficiencies as high as 4 % and operating lifetimes of 50,000 hours.Several companies are developing flat panel displays with these LEDs. One of thelimitations of polymer LEDs is that triplet excitons are non-emissive. Initial stepstowards solving this problem by transferring energy to phosphorescent molecules andrare earth complexes have recently been taken. One of the goals of this project is tooptimize energy transfer and charge transport in "doped" polymer films so that highquantum efficiencies, low operating voltages and high device stability can be obtained.Another limitation of current polymer LEDs is that most of the emitted photons aretrapped in the device by total internal reflection and that the photons which do escapecannot conveniently be collimated into a beam or coupled into a waveguide. The secondmajor goal of the project is use photonic crystals, e.g. one-dimensional dielectric stacksand two-dimensional gratings, to control the directionality of emission. Previousattempts to do this have not been fully successful because it was not possible to makephotonic crystals with a photonic band gap wide enough to completely control theemission of conjugated polymers, which have an emission spectrum with a width of morethan 100 nm. By using rare earth-doped polymers, which have emission bandwidths ofless than 4 nm, it will be possible to use photonic crystals to control the directionality ofemission. This project will not only increase the efficiency and functionality of polymer-basedLEDs, but will also provide a convenient light source for developing the scienceand technology of photonic crystals.The project provides many excellent research opportunities for students. Theywill work with a team of chemists to design new rare earth complexes and learn thequantum mechanics that regulate energy transfer, charge transfer and light emission.They will interact with members of industry to learn how to optimize polymer LEDs.They will use computer modeling to design one-, two-, and three-dimensional photoniccrystals to control the emission of light. They will also get to interact with a team ofresearchers at 3M and have the opportunity to push polymer-photonic crystal science andtechnology into new directions. Most of the research will be done by two graduatestudents, but there will be many opportunities for undergraduates and M.S. students totake on short-term projects.New courses on nanotechnology and organic optoelectronics will be developed toprepare students for research. The course on nanotechnology is designed to makestudents in several departments aware of the opportunities in this exciting area and tofoster multidisciplinary research. The course on organic optoelectronics will have severallab sessions in the PI's labs so that students can reinforce what they learn in class. Highschool teachers will visit the labs during the summer and be trained to use a kit of opticalequipment so that they can demonstrate photonics experiments to their students.
用半导体(共轭)聚合物制成的发光二极管(LED)量子效率高达4%,工作寿命为50,000小时。几家公司正在开发使用这些LED的平板显示器。聚合物发光二极管的局限性之一是三重态激子不发光。通过将能量转移到磷光分子和稀土配合物来解决这个问题的初步步骤最近已经采取。本项目的目标之一是优化“掺杂”聚合物薄膜中的能量转移和电荷输运,从而获得高量子效率、低工作电压和高器件稳定性。当前聚合物LED的另一个限制是,大部分发射的光子通过全内反射被捕获在器件中,并且逃逸的光子不能方便地准直成光束或耦合到波导中。该项目的第二个主要目标是使用光子晶体,例如一维介质堆叠和二维光栅,来控制发射的方向性。以前的尝试并没有完全成功,因为不可能使光子晶体的光子带隙足够宽,以完全控制共轭聚合物的发射,共轭聚合物的发射光谱宽度超过100 nm。通过使用稀土掺杂的聚合物,其发射带宽小于4 nm,将有可能使用光子晶体来控制发射的方向性。该项目不仅将提高聚合物基LED的效率和功能,而且将为光子晶体科学和技术的发展提供方便的光源,该项目为学生提供了许多极好的研究机会。他们将与一组化学家合作,设计新的稀土配合物,并学习调节能量转移、电荷转移和光发射的量子力学。他们将与工业界人士互动,学习如何优化聚合物LED。他们将使用计算机建模来设计一维、二维和三维光子晶体,以控制光的发射。他们还将与3M的一个研究团队进行互动,并有机会将聚合物光子晶体科学和技术推向新的方向。大部分研究将由两名研究生完成,但本科生和硕士也有很多机会。此外,学院亦会发展有关纳米科技及有机光电子学的新课程,以供学生作研究用途。纳米技术课程的目的是让几个系的学生意识到在这个令人兴奋的领域的机会,并促进多学科的研究。有机光电子学课程将在PI的实验室中进行几次实验,以便学生可以巩固他们在课堂上所学的内容。高中教师将在夏天参观实验室,并接受培训,使用一套光学设备,以便他们可以向学生演示光子学实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael McGehee其他文献
Michael McGehee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael McGehee', 18)}}的其他基金
Triple Halide Ultrawide Bandgap Metal Halide Perovskites
三卤化物超宽禁带金属卤化物钙钛矿
- 批准号:
2245435 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Reversible Metal Electrodeposition for Modulating Light
用于调制光的可逆金属电镀
- 批准号:
2127308 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续体中的光子束缚态的基于低维材料的纳米激光器
- 批准号:
23K26155 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of photonic reaction field based on collectrive behaviour of plasmonic particles using quntum coherence
利用量子相干性基于等离子体粒子的集体行为创建光子反应场
- 批准号:
23H01916 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on novel photonic crystal light sources using limit cycle oscillators
利用极限循环振荡器研究新型光子晶体光源
- 批准号:
23H01888 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of fundamental technologies for III-V semiconductor membrane photonic integrated circuits using quantum well intermixing
利用量子阱混合开发III-V族半导体膜光子集成电路基础技术
- 批准号:
23H00172 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Low-dimensional material-based nanolaser using photonic bound states in the continuum
使用连续谱中的光子束缚态的基于低维材料的纳米激光器
- 批准号:
23H01461 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of remote quantum sensing using photonic technologies
利用光子技术开发远程量子传感
- 批准号:
2885425 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Studentship
Optical frequency comb generation using integrated silicon photonic modulators
使用集成硅光子调制器生成光学频率梳
- 批准号:
573752-2022 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: CIF: FET: Small: Realizing Joint Detection Receivers for Quantum-enhanced Optical Communications using Photonic NISQ-era Quantum Processors
合作研究:CIF:FET:小型:使用光子 NISQ 时代量子处理器实现量子增强光通信的联合检测接收器
- 批准号:
2204985 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Photonic integration using Laser interference structured substrates
使用激光干涉结构化基板的光子集成
- 批准号:
EP/X016838/1 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Quantum photonic sensors: enabling measurements with unprecedented precision using entangled photons
量子光子传感器:使用纠缠光子实现前所未有的精确测量
- 批准号:
576210-2022 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years