Arithmetic and Quantum Intersection Theory on Homogeneous Spaces
齐次空间的算术与量子相交理论
基本信息
- 批准号:0098551
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2001-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is in different aspects of intersection theory in algebraic geometry: higher dimensional Arakelov theory, a part of arithmetic algebraic geometry, and quantum cohomology, a theory on the border between mathematics and quantum physics. The investigator studies the arithmetic and quantum intersection rings of homogeneous spaces, such as flag manifolds, as part of a general program of extending results of classical algebraic geometry to the new settings. The following are some of the problems considered: a) Understanding the arithmetic and quantum Schubert calculus for homogeneous spaces of classical Lie groups; b) finding determinantal formulas for Lagrangian and orthogonal degeneracy loci and developing further the investigator's theory of double Schubert polynomials; c) obtaining arithmetic analogues of Fulton's results on degeneracy loci and numerically positive polynomials; d) computing arithmetic intersections and heights on Shimura varieties.During the 19th century, mathematicians and physicists were fascinated by the symmetries observed in geometric objects. The many experiments and computations made at that time eventually led to the cohomology theories of the 20th century, which were applied to solve long-standing open problems in both fields. Today, we are in a similar situation in modern number theory and quantum field theory, and it is important to have calculations of specific examples to support and guide our intuition. The investigator examines two new theories, one motivated by number theory and the other by quantum physics, in many specific examples which are prototypes for this purpose. The potential applications are a better understanding of Diophantine equations and approximation, used in coding theory and theoretical computer science, and enumerative geometry of curves, related to string theory and symmetry in physics.
这项研究涉及代数几何中交集理论的不同方面:高维阿拉克洛夫理论(算术代数几何的一部分)和量子上同调(数学和量子物理之间的边界理论)。 调查研究算术和量子相交环的齐次空间,如旗流形,作为一个通用程序的一部分,扩展结果的经典代数几何的新的设置。 本文讨论了以下几个问题:(a)理解经典李群齐性空间的算术和量子Schubert演算;(B)找到Lagrange和正交退化轨迹的行列式公式,进一步发展研究者的双Schubert多项式理论;(c)获得富尔顿关于退化轨迹和数值正多项式的结果的算术类比; d)计算Shimura簇上的算术交和高度。在世纪,数学家和物理学家对在几何物体中观察到的对称性着迷。 当时的许多实验和计算最终导致了世纪的上同调理论,该理论被应用于解决这两个领域长期存在的开放问题。 今天,我们在现代数论和量子场论中处于类似的情况,重要的是要有具体例子的计算来支持和指导我们的直觉。 调查员检查两个新的理论,一个由数论和其他量子物理学的动机,在许多具体的例子,这是原型为这一目的。 潜在的应用是更好地理解丢番图方程和近似,用于编码理论和理论计算机科学,以及曲线的枚举几何,与弦理论和物理学中的对称性有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harry Tamvakis其他文献
A Giambelli formula for classical $G/P$ spaces
经典 $G/P$ 空间的 Giambelli 公式
- DOI:
10.1090/s1056-3911-2013-00604-9 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Harry Tamvakis - 通讯作者:
Harry Tamvakis
Arakelov theory of even orthogonal Grassmannians
偶正交格拉斯曼函数的阿拉克洛夫理论
- DOI:
10.4171/cmh/99 - 发表时间:
2007 - 期刊:
- 影响因子:0.9
- 作者:
Harry Tamvakis - 通讯作者:
Harry Tamvakis
Arithmetic intersection theory on flag varieties
标志品种的算术交集理论
- DOI:
10.1007/s002080050311 - 发表时间:
1996 - 期刊:
- 影响因子:1.4
- 作者:
Harry Tamvakis - 通讯作者:
Harry Tamvakis
Quantum cohomology of orthogonal Grassmannians
正交格拉斯曼函数的量子上同调
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:1.8
- 作者:
A. Kresch;Harry Tamvakis - 通讯作者:
Harry Tamvakis
Topological Symmetry Groups of Graphs in 3-Manifolds
3-流形中图的拓扑对称群
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
E. Flapan;Harry Tamvakis - 通讯作者:
Harry Tamvakis
Harry Tamvakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harry Tamvakis', 18)}}的其他基金
Geometry, Arithmetic, and Combinatorics of Schubert Calculus
舒伯特微积分的几何、算术和组合学
- 批准号:
1303352 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Schubert calculus and algebraic combinatorics
舒伯特微积分和代数组合学
- 批准号:
0901341 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Arakelov theory and quantum cohomology of homogeneous varieties
阿拉克洛夫理论和齐次簇的量子上同调
- 批准号:
0639033 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Arakelov theory and quantum cohomology of homogeneous varieties
阿拉克洛夫理论和齐次簇的量子上同调
- 批准号:
0401082 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Arithmetic and Quantum Intersection Theory on Homogeneous Spaces
齐次空间的算术与量子相交理论
- 批准号:
0296023 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9804522 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
- 批准号:
EP/Z000807/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
- 批准号:
2335283 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
- 批准号:
2339309 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
- 批准号:
2339469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant