Geometry, Arithmetic, and Combinatorics of Schubert Calculus

舒伯特微积分的几何、算术和组合学

基本信息

  • 批准号:
    1303352
  • 负责人:
  • 金额:
    $ 16.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The investigator will study the generalization of the classical Schubert calculus to the homogeneous spaces of Lie groups and related applications to enumerative algebraic geometry, arithmetic geometry, quantum cohomology, and algebraic combinatorics. The proposed research problems include the following: (a) Formulate and prove a rule for computing the product of two Schubert classes in the cohomology of flag manifolds; (b) establish a Pieri type rule in the cohomology and quantum cohomology ring of homogeneous spaces; (c) find a good theory of quantum Schubert polynomials for the orthogonal and symplectic Lie groups; (d) study the combinatorial theory of theta and eta polynomials, in particular their double versions, with applications to equivariant cohomology; (e) achieve more efficient computations in the Arakelov geometry of flag varieties. The educational activities proposed by the investigator include incorporating problems stemming from his research into the University of Maryland High School Mathematics Competition. He also is working on a book on Schubert calculus and its various modern extensions which will emphasize the geometric aspects of the theory, in a uniform manner across the different Lie types.In the late 19th century, Hermann Schubert made a first systematic study of enumerative projective geometry and invented a calculus which enabled him to solve a plethora of enumerative problems in a systematic fashion. An example of the kind of question he addressed is: given four randomly generated lines in Euclidean 3-space, how many lines will intersect all four of the given lines? Schubert's fundamental work was a precursor of the cohomology and intersection theories of the 20th century, and their modern extensions today, with applications to quantum physics (via string theory) and number theory (via arithmetic intersection theory). Moreover, the entire story can be placed in a more symmetric framework, and told using the language of Lie groups and their representation theory, at an increasing level of combinatorial complexity and importance. The investigator has studied these theories over a period of many years and has shown how to achieve combinatorially explicit computations and formulas which give a global picture of the ring structure in each case. Recently, he has succeeded in doing this in a uniform way across all classical Lie types -- in the case of cohomology -- and has thus opened new avenues of research in the rapidly growing field of modern Schubert calculus.This award is co-funded by the Combinatorics Program.
调查员将研究经典舒伯特演算的推广到李群的齐次空间和相关应用枚举代数几何,算术几何,量子上同调和代数组合学。提出的研究问题包括:(a)在旗流形的上同调中建立并证明一个计算两个Schubert类乘积的定则;(B)在齐性空间的上同调环和量子上同调环中建立一个Pieri型定则;(c)在正交和辛李群中找到一个好的量子Schubert多项式理论;(d)研究theta和eta多项式的组合理论,特别是它们的双重形式,并将其应用于等变上同调;(e)在旗簇的Arakelov几何中实现更有效的计算。调查员提出的教育活动包括将他的研究中产生的问题纳入马里兰州大学高中数学竞赛。他也正在写一本书舒伯特演算及其各种现代扩展,这将强调几何方面的理论,在统一的方式在不同的李类型。在19世纪后期,赫尔曼舒伯特作出了第一个系统的研究枚举射影几何和发明了演算,使他能够解决过多的枚举问题,在一个系统的方式。一个例子的那种问题,他解决的是:给定四个随机生成的线在欧几里德3空间,有多少线将相交所有四个给定的线?舒伯特的基础工作是世纪上同调和交集理论的先驱,以及它们今天的现代扩展,应用于量子物理学(通过弦理论)和数论(通过算术交集理论)。此外,整个故事可以放在一个更对称的框架中,并使用李群及其表示理论的语言来讲述,组合的复杂性和重要性越来越高。调查研究了这些理论在一段时间的许多年,并已表明如何实现组合明确的计算和公式,使全球图片的环结构在每种情况下。最近,他成功地在所有经典李类型中以统一的方式做到了这一点-在上同调的情况下-因此在快速发展的现代舒伯特微积分领域开辟了新的研究途径。该奖项由组合数学计划共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harry Tamvakis其他文献

A Giambelli formula for classical $G/P$ spaces
经典 $G/P$ 空间的 Giambelli 公式
  • DOI:
    10.1090/s1056-3911-2013-00604-9
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harry Tamvakis
  • 通讯作者:
    Harry Tamvakis
Arakelov theory of even orthogonal Grassmannians
偶正交格拉斯曼函数的阿拉克洛夫理论
Arithmetic intersection theory on flag varieties
标志品种的算术交集理论
  • DOI:
    10.1007/s002080050311
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Harry Tamvakis
  • 通讯作者:
    Harry Tamvakis
Quantum cohomology of orthogonal Grassmannians
正交格拉斯曼函数的量子上同调
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    A. Kresch;Harry Tamvakis
  • 通讯作者:
    Harry Tamvakis
Topological Symmetry Groups of Graphs in 3-Manifolds
3-流形中图的拓扑对称群
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Flapan;Harry Tamvakis
  • 通讯作者:
    Harry Tamvakis

Harry Tamvakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harry Tamvakis', 18)}}的其他基金

Schubert calculus and algebraic combinatorics
舒伯特微积分和代数组合学
  • 批准号:
    0901341
  • 财政年份:
    2009
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Arakelov theory and quantum cohomology of homogeneous varieties
阿拉克洛夫理论和齐次簇的量子上同调
  • 批准号:
    0639033
  • 财政年份:
    2006
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Arakelov theory and quantum cohomology of homogeneous varieties
阿拉克洛夫理论和齐次簇的量子上同调
  • 批准号:
    0401082
  • 财政年份:
    2004
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Arithmetic and Quantum Intersection Theory on Homogeneous Spaces
齐次空间的算术与量子相交理论
  • 批准号:
    0296023
  • 财政年份:
    2001
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Arithmetic and Quantum Intersection Theory on Homogeneous Spaces
齐次空间的算术与量子相交理论
  • 批准号:
    0098551
  • 财政年份:
    2001
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9804522
  • 财政年份:
    1998
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Fellowship Award

相似海外基金

RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
  • 批准号:
    2231565
  • 财政年份:
    2023
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
CAREER: Connections Between Tropical Geometry, Arithmetic Geometry, and Combinatorics
职业:热带几何、算术几何和组合数学之间的联系
  • 批准号:
    2044564
  • 财政年份:
    2021
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
Questions in Arithmetic Combinatorics
算术组合数学问题
  • 批准号:
    2054214
  • 财政年份:
    2021
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
  • 批准号:
    502267-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
  • 批准号:
    502267-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Arithmetic Combinatorics and Applications
算术组合及其应用
  • 批准号:
    1764081
  • 财政年份:
    2018
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
  • 批准号:
    502267-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Degenerations and applications to moduli, arithmetic and combinatorics.
模数、算术和组合的退化和应用。
  • 批准号:
    502267-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Additive combinatorics, arithmetic algebraic geometry and finite fields
加法组合学、算术代数几何和有限域
  • 批准号:
    DP170100786
  • 财政年份:
    2017
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Discovery Projects
Group actions in geometric/arithmetic Combinatorics
几何/算术组合中的群动作
  • 批准号:
    1943257
  • 财政年份:
    2017
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了