Singular Integrals and Maximal Functions
奇异积分和极大函数
基本信息
- 批准号:0098757
- 负责人:
- 金额:$ 44.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Proposal 0098757I plan to study analytical estimates for certain integral operators defined on functions on the Euclidean space of dimension greater than or equal to two. In these operators the integration is over surfaces of positive codimension, and we seek estimates reflecting curvature properties of the surface. Suppose for example, for each point, P, inthe Euclidean space we have a one dimensional curve emanating from P. From a given function, f, we form a new function Mf, called the maximal function, whose value at the point P is the supremum of the averages of f over the curve emanating from P. This then defines a transformation from functions on the Euclidean space to functions onthe Euclidean space. We want to know for what curves and what values of p this transformation is bounded on the Lebesgue space of functions with integrable pth power. Positive results here imply variants of Lebesgue's theorem on the differentiation of the integral. Namely ifthe transformation from a function f to Mf is bounded on one of these Lebesgue spaces, then for every function f in that Lebesgue space and almost every point P, the value f(P) may be recovered as a limit of averages of f over small portions of the curve through P. I am alsointerested in discrete analogues of these operators in which integration is replaced by sums over discrete sets of points.A basic problem for over a hundred years of the branch of mathematics known as Classical Analysis is that of recovering a function from averages of that function. This problem has been intimately connected with that of approximating an arbitrary function by a combination ofsimpler functions which in turn has been one of the main ways mathematics is applied to real world problems. I plan to study the problem of recovering functions on Euclidean space of at least two dimensions, from averages over small pieces of one dimensional curves. For a continuous function this is an easy question, but for wildly discontinuous functions it is a subtle problem depending on curvatureproperties of the curves. I also plan to study relatedtransformations and discrete analogues of these transformations where the averaging process is over discrete sets of points.
Abstract for Proposal 0098757I plan to study analytical estimates for certain integral operators defined on functions on the Euclidean space of dimension greater than or equal to two. In these operators the integration is over surfaces of positive codimension, and we seek estimates reflecting curvature properties of the surface. Suppose for example, for each point, P, inthe Euclidean space we have a one dimensional curve emanating from P. From a given function, f, we form a new function Mf, called the maximal function, whose value at the point P is the supremum of the averages of f over the curve emanating from P. This then defines a transformation from functions on the Euclidean space to functions onthe Euclidean space. We want to know for what curves and what values of p this transformation is bounded on the Lebesgue space of functions with integrable pth power. Positive results here imply variants of Lebesgue's theorem on the differentiation of the integral. Namely ifthe transformation from a function f to Mf is bounded on one of these Lebesgue spaces, then for every function f in that Lebesgue space and almost every point P, the value f(P) may be recovered as a limit of averages of f over small portions of the curve through P. I am alsointerested in discrete analogues of these operators in which integration is replaced by sums over discrete sets of points.A basic problem for over a hundred years of the branch of mathematics known as Classical Analysis is that of recovering a function from averages of that function. This problem has been intimately connected with that of approximating an arbitrary function by a combination ofsimpler functions which in turn has been one of the main ways mathematics is applied to real world problems. I plan to study the problem of recovering functions on Euclidean space of at least two dimensions, from averages over small pieces of one dimensional curves. For a continuous function this is an easy question, but for wildly discontinuous functions it is a subtle problem depending on curvatureproperties of the curves. I also plan to study relatedtransformations and discrete analogues of these transformations where the averaging process is over discrete sets of points.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Wainger其他文献
One-sided error estimates in renewal theory
- DOI:
10.1007/bf02786679 - 发表时间:
1967-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Charles Stone;Stephen Wainger - 通讯作者:
Stephen Wainger
An Introduction to the Circle Method of Hardy, Littlewood, and Ramanujan
- DOI:
10.1007/s12220-020-00579-9 - 发表时间:
2021-01-25 - 期刊:
- 影响因子:1.500
- 作者:
Stephen Wainger - 通讯作者:
Stephen Wainger
Stephen Wainger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Wainger', 18)}}的其他基金
Singular Integrals and Maximal Functions
奇异积分和极大函数
- 批准号:
0555850 - 财政年份:2006
- 资助金额:
$ 44.72万 - 项目类别:
Standard Grant
Singular Integrals and Maximal Functions
奇异积分和极大函数
- 批准号:
9731647 - 财政年份:1998
- 资助金额:
$ 44.72万 - 项目类别:
Standard Grant
Mathematical Sciences: Fourier Analysis
数学科学:傅立叶分析
- 批准号:
9501040 - 财政年份:1995
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant
Mathematical Sciences: Fourier Analysis
数学科学:傅立叶分析
- 批准号:
9200634 - 财政年份:1992
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Averages of Functions
数学科学:函数的奇异积分和平均值
- 批准号:
8901442 - 财政年份:1989
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Averages of Functions
数学科学:函数的奇异积分和平均值
- 批准号:
8600302 - 财政年份:1986
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Averages of Functions
数学科学:函数的奇异积分和平均值
- 批准号:
8219022 - 财政年份:1983
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant
Singular Integrals and Averages of Functions
函数的奇异积分和平均值
- 批准号:
8002178 - 财政年份:1980
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant
Singular Integrals and Maximal Functions in Euclidean Spaces
欧几里得空间中的奇异积分和极大函数
- 批准号:
7807654 - 财政年份:1978
- 资助金额:
$ 44.72万 - 项目类别:
Standard Grant
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 44.72万 - 项目类别:
Standard Grant
Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
- 批准号:
23K03164 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
- 批准号:
2238818 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant
Equidistribution, Period Integrals of Automorphic Forms, and Subconvexity
等分布、自守形式的周期积分和次凸性
- 批准号:
2302079 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Standard Grant
Singular integrals on curves, the Beurling-Ahlfors transform, and commutators
曲线上的奇异积分、Beurling-Ahlfors 变换和换向器
- 批准号:
2247234 - 财政年份:2023
- 资助金额:
$ 44.72万 - 项目类别:
Standard Grant
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2022
- 资助金额:
$ 44.72万 - 项目类别:
Discovery Grants Program - Individual
The mathematical study of the Feynman path integrals and its applications to QED and quantum information theory
费曼路径积分的数学研究及其在 QED 和量子信息论中的应用
- 批准号:
22K03384 - 财政年份:2022
- 资助金额:
$ 44.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetries, Conserved Integrals, Hamiltonian Flows, and Integrable Systems
对称性、守恒积分、哈密顿流和可积系统
- 批准号:
RGPIN-2019-06902 - 财政年份:2022
- 资助金额:
$ 44.72万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2022
- 资助金额:
$ 44.72万 - 项目类别:
Discovery Grants Program - Individual
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:
2200470 - 财政年份:2022
- 资助金额:
$ 44.72万 - 项目类别:
Continuing Grant














{{item.name}}会员




