Singular Integrals and Maximal Functions
奇异积分和极大函数
基本信息
- 批准号:0555850
- 负责人:
- 金额:$ 13.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTProfessor Wainger expects the primary focus of his research to be on l(p) estimates for discrete analogues of a family of continuous operators. In the continuous situation one is given for each point, x, in n-dimensional space a variety, V (x), of positive codimension passing through x. Given a function, f , on n-dimensional space one considers maximal or singular averages of f where the average of x is over the variety V (x). We then seek L(p) estimates for these averages. In the discrete analogue we consider functions defined over the lattice points, m, in n-dimensional space, and the average is over an arithmetic set containing m. In the continuous problem alluded to above, most of the work assumes the variety V (x) has finite order of contact with its tangent plane. Professor Wainger also plans to continue his investigation into the case that V (x) has infinite order of contact with its tangent plane. Professor Wainger plans to study averages of functions defined on latticepoints in n-dimensional space. (Lattice points are points with integral coordinates.) For each lattice point, m, one considers averages over an arithmetic subset containing m. The goal is to relate analytical properties of these averages to arithmetic properties of these subsets. Results of this type have applications to problems of Ergodic theory. A corresponding contin uous problem has received a great deal of attention in the last forty years. In this problem one averages functions defined on n-dimensional space over submanifolds of n-dimensional space. The goal is to relate analytical esti matesfor these averages to geometric properties of the submanifold. This work largely assumes that there is only finite order of contact between the submanifold and its tangent plane. Professor Wainger plans to continue his study of the situation in which the submanifold has infinite order of contact with its tangent plane.
Wainger教授期望他的研究主要集中在连续算子族的离散类似的L(P)估计上。在连续情形下,对于n维空间中的每个点x,给出一个正余维通过x的簇V(X)。给定n维空间上的函数f,人们考虑f的最大或奇异平均,其中x的平均值在簇V(X)上。然后我们求出这些平均值的L(P)估计。在离散模拟中,我们考虑定义在n维空间中的格点m上的函数,平均值是在包含m的算术集上的。在上面提到的连续问题中,大多数工作假设变种V(X)与其切平面有有限级接触。Wainger教授还计划继续调查V(X)与其切平面有无穷级接触的情况。Wainger教授计划研究n维空间中定义在格点上的函数的平均值。(晶格点是具有整数坐标的点。)对于每个格点m,考虑包含m的算术子集上的平均值。目标是将这些平均值的分析性质与这些子集的算术性质联系起来。这类结果可应用于遍历理论的问题。在过去的四十年里,一个相应的持续存在的问题受到了极大的关注。在这个问题中,人们将定义在n维空间上的函数平均到n维空间的子流形上。目标是将这些平均值的分析估计与子流形的几何性质联系起来。这项工作在很大程度上假设子流形与其切平面之间只有有限级的接触。Wainger教授计划继续研究子流形与其切平面有无限级接触的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Wainger其他文献
One-sided error estimates in renewal theory
- DOI:
10.1007/bf02786679 - 发表时间:
1967-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Charles Stone;Stephen Wainger - 通讯作者:
Stephen Wainger
An Introduction to the Circle Method of Hardy, Littlewood, and Ramanujan
- DOI:
10.1007/s12220-020-00579-9 - 发表时间:
2021-01-25 - 期刊:
- 影响因子:1.500
- 作者:
Stephen Wainger - 通讯作者:
Stephen Wainger
Stephen Wainger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Wainger', 18)}}的其他基金
Singular Integrals and Maximal Functions
奇异积分和极大函数
- 批准号:
0098757 - 财政年份:2001
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Singular Integrals and Maximal Functions
奇异积分和极大函数
- 批准号:
9731647 - 财政年份:1998
- 资助金额:
$ 13.84万 - 项目类别:
Standard Grant
Mathematical Sciences: Fourier Analysis
数学科学:傅立叶分析
- 批准号:
9501040 - 财政年份:1995
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Mathematical Sciences: Fourier Analysis
数学科学:傅立叶分析
- 批准号:
9200634 - 财政年份:1992
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Averages of Functions
数学科学:函数的奇异积分和平均值
- 批准号:
8901442 - 财政年份:1989
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Averages of Functions
数学科学:函数的奇异积分和平均值
- 批准号:
8600302 - 财政年份:1986
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Mathematical Sciences: Singular Integrals and Averages of Functions
数学科学:函数的奇异积分和平均值
- 批准号:
8219022 - 财政年份:1983
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Singular Integrals and Averages of Functions
函数的奇异积分和平均值
- 批准号:
8002178 - 财政年份:1980
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Singular Integrals and Maximal Functions in Euclidean Spaces
欧几里得空间中的奇异积分和极大函数
- 批准号:
7807654 - 财政年份:1978
- 资助金额:
$ 13.84万 - 项目类别:
Standard Grant
相似国自然基金
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Oscillatory Integrals and Falconer's Conjecture
振荡积分和福尔科纳猜想
- 批准号:
2424015 - 财政年份:2024
- 资助金额:
$ 13.84万 - 项目类别:
Standard Grant
Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
- 批准号:
23K03164 - 财政年份:2023
- 资助金额:
$ 13.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Oscillatory Integrals and the Geometry of Projections
职业:振荡积分和投影几何
- 批准号:
2238818 - 财政年份:2023
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant
Equidistribution, Period Integrals of Automorphic Forms, and Subconvexity
等分布、自守形式的周期积分和次凸性
- 批准号:
2302079 - 财政年份:2023
- 资助金额:
$ 13.84万 - 项目类别:
Standard Grant
Singular integrals on curves, the Beurling-Ahlfors transform, and commutators
曲线上的奇异积分、Beurling-Ahlfors 变换和换向器
- 批准号:
2247234 - 财政年份:2023
- 资助金额:
$ 13.84万 - 项目类别:
Standard Grant
The mathematical study of the Feynman path integrals and its applications to QED and quantum information theory
费曼路径积分的数学研究及其在 QED 和量子信息论中的应用
- 批准号:
22K03384 - 财政年份:2022
- 资助金额:
$ 13.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measures, orbital integrals, and counting points.
测量、轨道积分和计数点。
- 批准号:
RGPIN-2020-04351 - 财政年份:2022
- 资助金额:
$ 13.84万 - 项目类别:
Discovery Grants Program - Individual
Symmetries, Conserved Integrals, Hamiltonian Flows, and Integrable Systems
对称性、守恒积分、哈密顿流和可积系统
- 批准号:
RGPIN-2019-06902 - 财政年份:2022
- 资助金额:
$ 13.84万 - 项目类别:
Discovery Grants Program - Individual
Weighted norm inequalities for singular integrals
奇异积分的加权范数不等式
- 批准号:
RGPIN-2020-06829 - 财政年份:2022
- 资助金额:
$ 13.84万 - 项目类别:
Discovery Grants Program - Individual
Class Groups, Character Sums, and Oscillatory Integrals
类组、字符和和振荡积分
- 批准号:
2200470 - 财政年份:2022
- 资助金额:
$ 13.84万 - 项目类别:
Continuing Grant