Dynamics in Physical Models
物理模型中的动力学
基本信息
- 批准号:0098788
- 负责人:
- 金额:$ 8.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is devoted to dynamical systems of physical origin, including Lorentz gases (both in equilibrium and under external forces), hard ball systems, billiards, ideal gases with a massive test particle, and open Hamiltonian systems. Most of these are known (or expected) to have chaotic behavior. Due to recent works of D. Dolgopyat, D. Ruelle, Ya. Sinai, L.-S. Young and others, mathematical tools in the theory of hyperbolic and chaotic dynamical systems appear to be developed far enough to attack many open problems that have been so far only studied heuristically or numerically by physicists, if at all. In particular, we plan to investigate the nature of nonequilibrium steady states by means of Sinai-Ruelle-Bowen measures, time correlation functions that appear in transport laws and diffusion equations, open Hamiltonian systems that admit conditionally invariant measures, the motion of a massive particle in an ideal gas by using an appropriate space-time limit, etc. In each case we aim at obtaining exact results and providing solid rigorous proofs. The general goal of the project is to conduct mathematical studies of facts and phenomena that have attracted attention in physical community and have applications outside of mathematics. In particular, the results would contribute to the mathematical foundation of statistical mechanics and thermodynamics and could strengthen the link between the theory of dynamical systems and physics and other sciences.
该项目致力于物理起源的动力学系统,包括洛伦兹气体(平衡和外力下),硬球系统,台球,具有大质量测试粒子的理想气体和开放的哈密顿系统。其中大多数已知(或预期)具有混沌行为。由于D.多尔戈皮亚特湾Ruelle,Ya.西奈湖S.杨和其他人认为,双曲和混沌动力系统理论中的数学工具似乎已经发展到足以解决许多迄今为止只被物理学家进行了理论或数值研究的开放问题。特别是,我们计划通过Sinai-Ruelle-Bowen措施,出现在输运定律和扩散方程中的时间相关函数,允许条件不变措施的开放Hamilton系统,通过使用适当的时空限制,在每种情况下,我们的目标是获得准确的结果,并提供坚实的严格的证明。该项目的总体目标是对在物理界引起注意并在数学之外有应用的事实和现象进行数学研究。特别是,这些结果将有助于统计力学和热力学的数学基础,并可以加强动力系统理论与物理学和其他科学之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolai Chernov其他文献
(Global and local) fluctuations of phase space contraction in deterministic stationary nonequilibrium.
确定性稳态非平衡中相空间收缩的(全局和局部)波动。
- DOI:
10.1063/1.166369 - 发表时间:
1998 - 期刊:
- 影响因子:2.9
- 作者:
F. Bonetto;Nikolai Chernov;J. Lebowitz - 通讯作者:
J. Lebowitz
Statistical analysis of curve fitting methods in errors-in-variables models
变量误差模型中曲线拟合方法的统计分析
- DOI:
10.1090/s0094-9000-2012-00860-0 - 发表时间:
2012 - 期刊:
- 影响因子:0.9
- 作者:
A. Al;Nikolai Chernov - 通讯作者:
Nikolai Chernov
Measures with infinite Lyapunov exponents for the periodic Lorentz gas
用无限李亚普诺夫指数测量周期性洛伦兹气体
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Nikolai Chernov;S. Troubetzkoy - 通讯作者:
S. Troubetzkoy
Flow-Invariant Hypersurfaces in Semi-Dispersing Billiards
- DOI:
10.1007/s00023-006-0313-5 - 发表时间:
2007-05-15 - 期刊:
- 影响因子:1.300
- 作者:
Nikolai Chernov;Nandor Simányi - 通讯作者:
Nandor Simányi
Nikolai Chernov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolai Chernov', 18)}}的其他基金
HYPERBOLIC DYNAMICS IN PHYSICAL MODELS
物理模型中的双曲动力学
- 批准号:
0969187 - 财政年份:2010
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Limit Theorems for Multiparticle Systems
多粒子系统的极限定理
- 批准号:
0652896 - 财政年份:2007
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Brownian motion in partially hyperbolic systems
部分双曲系统中的布朗运动
- 批准号:
0354775 - 财政年份:2004
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Chaotic Dynamics, Attractors and Repellers
混沌动力学、吸引子和排斥子
- 批准号:
9732728 - 财政年份:1998
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Chaotic Attractors and Repellers: Rigorous Results
数学科学:混沌吸引子和排斥子:严格的结果
- 批准号:
9622547 - 财政年份:1996
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
相似国自然基金
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
- 批准号:61300132
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 8.45万 - 项目类别:
Continuing Grant
Conference: SICB 2024: Computational and Physical Models in Research and Teaching to Explore Form-Function Relationships
会议:SICB 2024:研究和教学中的计算和物理模型探索形式-功能关系
- 批准号:
2326876 - 财政年份:2023
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Physical Models for Cancer Cells with Links to Alterations in Genome Organization
与基因组组织改变相关的癌细胞物理模型
- 批准号:
2310639 - 财政年份:2023
- 资助金额:
$ 8.45万 - 项目类别:
Continuing Grant
Improving Interpretable Machine Learning for Plasmas: Towards Physical Insight, Data-Driven Models, and Optimal Sensing
改进等离子体的可解释机器学习:迈向物理洞察、数据驱动模型和最佳传感
- 批准号:
2329765 - 财政年份:2023
- 资助金额:
$ 8.45万 - 项目类别:
Continuing Grant
A Study on Language Acquisition using Physical Analysis of Learning Models in Teacher-Student Setting
利用师生环境中学习模式的物理分析进行语言习得研究
- 批准号:
23KJ0622 - 财政年份:2023
- 资助金额:
$ 8.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Statistical Models and Mechanisms Linking Biomarkers of Aging to Cognitive-Physical Decline and Dementia
将衰老生物标志物与认知身体衰退和痴呆联系起来的统计模型和机制
- 批准号:
10513438 - 财政年份:2022
- 资助金额:
$ 8.45万 - 项目类别:
Thermodynamic and physical property models for the production of greener aluminum alloys
用于生产绿色铝合金的热力学和物理性能模型
- 批准号:
560998-2020 - 财政年份:2022
- 资助金额:
$ 8.45万 - 项目类别:
Alliance Grants