Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
基本信息
- 批准号:2206241
- 负责人:
- 金额:$ 28.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In modeling the natural world, scientists often must rely on approximations that result in incomplete information about a system under study. Such is the case in elementary particle physics, statistical mechanics, and gravitation. A fundamental question is then how to extract from limited data as much information as possible, with the possible highest level of accuracy and confidence. This project will draw on several areas of mathematics to analyze this issue in mathematics and physics. Additionally, the investigator aims to further develop the mathematics of laser-matter interaction. The project offers training research opportunities for graduate students. A central topic addressed in the project is the interaction of matter and radiation. For the time-dependent laser-induced photoelectric effect, the investigator will apply a constructive mathematical technique to the photoionization models and the two-frequency models used in experiments, to fine-tune the photoelectric output and, in interdisciplinary work with experimentalists, to predict and optimize the processes. A second aim of the project is to determine the behavior of physical and mathematical models outside the range of perturbation theory, with the highest possible level of accuracy and confidence, when only a limited number of terms of a perturbation expansion can be calculated. The investigator aims to develop methods that exceed the precision previously achieved and that are optimal under specific mathematical conditions. The methods will be applied also to mathematical problems in which exact solutions are available, but their numerical utilization is computationally demanding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在对自然界进行建模时,科学家经常必须依赖于导致关于正在研究的系统的不完整信息的近似。基本粒子物理、统计力学和万有引力都是如此。因此,一个根本的问题是如何从有限的数据中提取尽可能多的信息,并尽可能地保持最高的准确性和置信度。这个项目将利用数学的几个领域来分析数学和物理中的这个问题。此外,研究人员的目标是进一步发展激光与物质相互作用的数学。该项目为研究生提供了培训和研究机会。该项目涉及的一个中心主题是物质和辐射的相互作用。对于时间相关的激光诱导光电效应,研究人员将把一种建设性的数学技术应用于实验中使用的光电离化模型和双频模型,以微调光电输出,并在与实验者的交叉学科工作中,预测和优化过程。该项目的第二个目标是在只能计算有限数量的微扰展开项的情况下,以尽可能高的精度和置信度来确定微扰理论范围之外的物理和数学模型的行为。研究人员的目标是开发出在特定数学条件下最优的、超出以前达到的精度的方法。这些方法也将应用于可以获得精确解的数学问题,但它们的数值利用是计算上的需求。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-perturbative Solution of the 1d Schrödinger Equation Describing Photoemission from a Sommerfeld Model Metal by an Oscillating Field
描述振荡场索末菲模型金属光电发射的一维薛定谔方程的非微扰解
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Ovidiu Costin, Rodica Costin
- 通讯作者:Ovidiu Costin, Rodica Costin
Noise Effects on Padé Approximants and Conformal Maps
噪声对 Padé 近似值和共形贴图的影响
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:O. Costin, G.V. Dunne
- 通讯作者:O. Costin, G.V. Dunne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovidiu Costin其他文献
Foundational aspects of singular integrals
- DOI:
10.1016/j.jfa.2014.09.005 - 发表时间:
2014-12-15 - 期刊:
- 影响因子:
- 作者:
Ovidiu Costin;Harvey M. Friedman - 通讯作者:
Harvey M. Friedman
Decay versus survival of a localized state subjected to harmonic forcing: exact results
受到谐波强迫的局部状态的衰变与生存:精确结果
- DOI:
10.1088/0305-4470/35/42/305 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
A. Rokhlenko;Ovidiu Costin;J. Lebowitz - 通讯作者:
J. Lebowitz
A ug 2 00 6 Nonperturbative analysis of a model quantum system under time periodic forcing
A ug 2 00 6 时间周期强迫下模型量子系统的非微扰分析
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;R. Costin;J. Lebowitz;A. Rokhlenko - 通讯作者:
A. Rokhlenko
The blockage problem
堵塞问题
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Costin;J. Lebowitz;E. Speer;A. Troiani - 通讯作者:
A. Troiani
Behavior of lacunary series at the natural boundary
自然边界处的空隙系列的行为
- DOI:
10.1016/j.aim.2009.06.011 - 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
Ovidiu Costin;Min Huang - 通讯作者:
Min Huang
Ovidiu Costin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovidiu Costin', 18)}}的其他基金
Development of Non-Perturbative Approaches to Partial Differential Equations Arising in Physical Applications
物理应用中出现的偏微分方程的非微扰方法的发展
- 批准号:
1515755 - 财政年份:2015
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
Borel Summation and Applications to PDEs
Borel 求和及其在偏微分方程中的应用
- 批准号:
0807266 - 财政年份:2008
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Structure of Solutions of the Time Dependent Schroedinger Equation and of Certain Classes of Evolution Nonlinear PDEs
瞬态薛定谔方程和某些类演化非线性偏微分方程解的结构
- 批准号:
0600369 - 财政年份:2006
- 资助金额:
$ 28.4万 - 项目类别:
Continuing grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0601226 - 财政年份:2005
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDE's and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0406193 - 财政年份:2004
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear PDEs and Integro-Differential Equations in the Complex Plane
合作研究:复平面上的非线性偏微分方程和积分微分方程
- 批准号:
0103807 - 财政年份:2001
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9996365 - 财政年份:1998
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Theory and Applications of Exponential Asymptotics
指数渐进理论与应用
- 批准号:
9704968 - 财政年份:1997
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052572 - 财政年份:2021
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052519 - 财政年份:2021
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Large-N analysis of irrelevant deformations of quantum field theory and their non-perturbative aspects
量子场论的不相关变形及其非微扰方面的大 N 分析
- 批准号:
21J14825 - 财政年份:2021
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052899 - 财政年份:2021
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Non-perturbative spectral analysis of quantum field theory by stochastic analysis and semi-classical approximation
通过随机分析和半经典近似对量子场论进行非微扰谱分析
- 批准号:
20H01808 - 财政年份:2020
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-perturbative analysis of conformal gauge theories by renormalization group
重正化群对共形规范理论的非微扰分析
- 批准号:
24540275 - 财政年份:2012
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative spectral analysis of quantum system by stochastic method
量子系统的随机方法非微扰谱分析
- 批准号:
23340032 - 财政年份:2011
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-perturbative analysis of quantum interaction systems
量子相互作用系统的非微扰分析
- 批准号:
20340032 - 财政年份:2008
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Non-perturbative analysis of gauge theories using supergravities
使用超重力对规范理论进行非微扰分析
- 批准号:
15540252 - 财政年份:2003
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the non-perturbative structure of string theory on the basis of string field theory
基于弦场论的弦论非微扰结构分析
- 批准号:
15540268 - 财政年份:2003
- 资助金额:
$ 28.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)