Some Questions in Inverse Problems and the Mixed Problem for Laplace's Equation in Lipschitz Domains

Lipschitz域拉普拉斯方程反问题和混合问题中的几个问题

基本信息

  • 批准号:
    0099921
  • 负责人:
  • 金额:
    $ 8.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-06-01 至 2005-05-31
  • 项目状态:
    已结题

项目摘要

This project will study several questions in partial differentialequations which lead to interesting questions in harmonicanalysis. The first set of questions are related to the inverseconductivity problem as studied by Sylvester and Uhlmann. My maininterest is considering the a priori regularity assumption which seemto be necessary to study this problem. I propose a technique toestablish a uniqueness theorem in dimensions 3 and larger forcoefficients which only have one derivative. In addition, I willconsider the two-dimensional problem, where such a theorem isknown. In two dimensions, I propose to extend the result fromequations to systems. The second set of questions are related to themixed problem for Laplace's equation. The goal here is to obtainoptimal regularity results for solutions to these problems. Examplesindicate that the positive result depend strongly on the geometry ofthe domain and the sets where Dirichlet and Neumann data areposed.The inverse conductivity problem is a mathematical formulation of theproblem of determining the interior physical properties of an objectby making electrical measurements at the boundary. This and relatedproblems are of practical importance in medical imaging and in thenondestructive evaluation of materials. The theoretical investigationsproposed in this project may shed some light on how to improvepractical implementation of these problems. The mixed problem forLaplace's equation models the problem of determining the temperaturein the interior of a solid where part of the boundary is insulated.My research is focused on understanding how the geometry of theregion of the region affects our ability to solve this problem.
这个项目将研究偏微分方程中的几个问题,这些问题会导致调和分析中有趣的问题。第一组问题涉及的inverseconductivity问题的研究西尔维斯特和乌尔曼。我的主要兴趣是考虑一个先验的正则性假设,这是必要的研究这个问题。 我提出了一个技巧来建立一个唯一性定理,在三维和更大的系数,只有一个衍生物。此外,我将考虑二维问题,其中这样一个定理是已知的。在两个维度上,我建议将结果从方程推广到系统。第二组问题与拉普拉斯方程的混合问题有关。这里的目标是为这些问题的解决方案获得最优的正则性结果。实例表明,正解强烈地依赖于区域的几何形状和Dirichlet和Neumann数据所处的集合.电导率反问题是通过在边界上进行电测量来确定物体内部物理性质的问题的数学表述.这一问题及相关问题在医学成像和材料无损评价中具有重要的实际意义。本项目提出的理论研究可能对如何改进这些问题的实际实施提供一些启示。 拉普拉斯方程的混合问题模拟了确定固体内部温度的问题,其中部分边界是绝缘的。我的研究重点是了解区域的几何形状如何影响我们解决这个问题的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Brown其他文献

Metformin for the management of peri‐operative hyperglycaemia
二甲双胍治疗围手术期高血糖
The Reliability and Validity of the Task Analysis Recording Procedure (TARP)
任务分析记录程序 (TARP) 的可靠性和有效性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Russell Brown
  • 通讯作者:
    Russell Brown
Creation, implementation, and evaluation of a FPA simulator ce program
Color and Sound: Synaesthesia at the Crossroads of Music and Science a Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
颜色与声音:音乐与科学十字路口的联觉向佛罗里达大学研究生院提交的论文,部分满足哲学博士学位的要求
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew McCabe;My Teachers;Benjamin Broening;Elainie Lillios;Mikel Kuehn;James Paul Sain;Russell Robinson;Paul Richards;Jamie Reilly;Lise Abrams;Linda Hermer;Amy Corning;Rick Dietrich;Cain Norris;Ben Baldwin;Berkeley;G. Hoflund;Russell Brown;Heather Mcreynolds;Stefanie Acevedo;Joo Won Park;Mike Solomon;Kyle Vegter
  • 通讯作者:
    Kyle Vegter
In reply: Regarding the survey on perioperative diabetes medications and glucose control
回复:关于围手术期糖尿病用药及血糖控制情况调查

Russell Brown的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Brown', 18)}}的其他基金

Graduate Scholars in Mathematics at the University of Kentucky
肯塔基大学数学研究生学者
  • 批准号:
    1356253
  • 财政年份:
    2014
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Continuing Grant
Minimal Smoothness Questions for Inverse Problems and Boundary Value Problems
反问题和边值问题的最小光滑度问题
  • 批准号:
    9801276
  • 财政年份:
    1998
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations Under Minimal Smoothness Conditions
数学科学:最小光滑条件下的偏微分方程
  • 批准号:
    9305753
  • 财政年份:
    1993
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Parabolic Partial Differential Equations in Nonsmooth Domains.
数学科学:非光滑域中的抛物型偏微分方程。
  • 批准号:
    9103046
  • 财政年份:
    1991
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Continuing Grant
Workshop to Determine Research Needs for Masonry; Clemson, South Carolina; Spring 1988.
确定砌体研究需求的研讨会;
  • 批准号:
    8811374
  • 财政年份:
    1988
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8705952
  • 财政年份:
    1987
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Fellowship Award
Properties of Grouted Hollow Brick Masonry
灌浆空心砖砌体的性能
  • 批准号:
    8517020
  • 财政年份:
    1985
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Continuing Grant
Static and Cyclic Behavior of Masonry Retrofit Embedments (Earthquake Engineering)
砌体改造埋件的静态和循环行为(地震工程)
  • 批准号:
    8217638
  • 财政年份:
    1983
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Specialized Engineering Research Equipment: Installation And Calibration of Structural Testing Equipment
专业工程研究设备:结构检测设备安装与校准
  • 批准号:
    7925821
  • 财政年份:
    1980
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Cyclic Response of Masonry Anchor Bolts
砌体锚栓的循环响应
  • 批准号:
    7806095
  • 财政年份:
    1979
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Continuing Grant

相似海外基金

Asking and Exploring Big Questions in Astronomy
提出和探索天文学中的大问题
  • 批准号:
    ST/Y005848/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Research Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
  • 批准号:
    480806
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Miscellaneous Programs
The changing Level 3 qualifications market Rationale and Research questions
不断变化的 3 级资格市场基本原理和研究问题
  • 批准号:
    2883720
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Studentship
IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
  • 批准号:
    2319080
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
  • 批准号:
    2313466
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
  • 批准号:
    2226553
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
  • 批准号:
    2226601
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
  • 批准号:
    480813
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Miscellaneous Programs
Strategic Engagement of Patients in Sepsis preclinical Studies (SEPSIS): A Priority-Setting Exercise to Identify Patient Important Questions
患者战略性参与脓毒症临床前研究 (SEPSIS):确定患者重要问题的优先顺序设置练习
  • 批准号:
    487935
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Miscellaneous Programs
Questions of National Identity in Palestinian Hip-Hop 2010 to 2021
2010 年至 2021 年巴勒斯坦嘻哈音乐中的民族认同问题
  • 批准号:
    2879630
  • 财政年份:
    2023
  • 资助金额:
    $ 8.1万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了