Mathematical Sciences: Parabolic Partial Differential Equations in Nonsmooth Domains.
数学科学:非光滑域中的抛物型偏微分方程。
基本信息
- 批准号:9103046
- 负责人:
- 金额:$ 4.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-07-15 至 1994-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study parabolic partial differential equations in domains with rough boundaries. Using as a frame of reference recent results on the heat equation, efforts will be made to establish regularity properties of solutions to higher order parabolic equations and noncylindrical domains. Main issues to be dealt with are the spectral properties of the domains and properties of the trace semigroup. In addition to solving basic questions in differential equations, the result of this project have implications to applied areas such as probability, physics and engineering. In particular problems in colloids and furtive materials might benefit from this investment.
本课题将研究具有粗糙边界的区域中的抛物型偏微分方程解。以热方程的最新结果为参照,建立高阶抛物型方程和非圆柱型区域解的正则性。要处理的主要问题是定义域的谱性质和迹半群的性质。除了解决微分方程中的基本问题外,这个项目的结果还对概率、物理和工程等应用领域有影响。特别是,胶体和隐秘材料方面的问题可能会从这项投资中受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Brown其他文献
Metformin for the management of peri‐operative hyperglycaemia
二甲双胍治疗围手术期高血糖
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Russell Brown;J. Paul - 通讯作者:
J. Paul
The Reliability and Validity of the Task Analysis Recording Procedure (TARP)
任务分析记录程序 (TARP) 的可靠性和有效性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Russell Brown - 通讯作者:
Russell Brown
Creation, implementation, and evaluation of a FPA simulator ce program
- DOI:
10.1007/bf03023176 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:3.300
- 作者:
Jordan Tarshis;Susan De Sousa;Russell Brown;Stuart Iglesias;Monica Kohlhammer - 通讯作者:
Monica Kohlhammer
Color and Sound: Synaesthesia at the Crossroads of Music and Science a Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
颜色与声音:音乐与科学十字路口的联觉向佛罗里达大学研究生院提交的论文,部分满足哲学博士学位的要求
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Matthew McCabe;My Teachers;Benjamin Broening;Elainie Lillios;Mikel Kuehn;James Paul Sain;Russell Robinson;Paul Richards;Jamie Reilly;Lise Abrams;Linda Hermer;Amy Corning;Rick Dietrich;Cain Norris;Ben Baldwin;Berkeley;G. Hoflund;Russell Brown;Heather Mcreynolds;Stefanie Acevedo;Joo Won Park;Mike Solomon;Kyle Vegter - 通讯作者:
Kyle Vegter
In reply: Regarding the survey on perioperative diabetes medications and glucose control
回复:关于围手术期糖尿病用药及血糖控制情况调查
- DOI:
10.1007/s12630-019-01425-5 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Russell Brown;U. Siddiqui;J. Paul - 通讯作者:
J. Paul
Russell Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Brown', 18)}}的其他基金
Graduate Scholars in Mathematics at the University of Kentucky
肯塔基大学数学研究生学者
- 批准号:
1356253 - 财政年份:2014
- 资助金额:
$ 4.13万 - 项目类别:
Continuing Grant
Some Questions in Inverse Problems and the Mixed Problem for Laplace's Equation in Lipschitz Domains
Lipschitz域拉普拉斯方程反问题和混合问题中的几个问题
- 批准号:
0099921 - 财政年份:2001
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Minimal Smoothness Questions for Inverse Problems and Boundary Value Problems
反问题和边值问题的最小光滑度问题
- 批准号:
9801276 - 财政年份:1998
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations Under Minimal Smoothness Conditions
数学科学:最小光滑条件下的偏微分方程
- 批准号:
9305753 - 财政年份:1993
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Workshop to Determine Research Needs for Masonry; Clemson, South Carolina; Spring 1988.
确定砌体研究需求的研讨会;
- 批准号:
8811374 - 财政年份:1988
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705952 - 财政年份:1987
- 资助金额:
$ 4.13万 - 项目类别:
Fellowship Award
Properties of Grouted Hollow Brick Masonry
灌浆空心砖砌体的性能
- 批准号:
8517020 - 财政年份:1985
- 资助金额:
$ 4.13万 - 项目类别:
Continuing Grant
Static and Cyclic Behavior of Masonry Retrofit Embedments (Earthquake Engineering)
砌体改造埋件的静态和循环行为(地震工程)
- 批准号:
8217638 - 财政年份:1983
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Specialized Engineering Research Equipment: Installation And Calibration of Structural Testing Equipment
专业工程研究设备:结构检测设备安装与校准
- 批准号:
7925821 - 财政年份:1980
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Cyclic Response of Masonry Anchor Bolts
砌体锚栓的循环响应
- 批准号:
7806095 - 财政年份:1979
- 资助金额:
$ 4.13万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Second Order Elliptic and Parabolic Differential Equations
数学科学:二阶椭圆和抛物型微分方程
- 批准号:
9623287 - 财政年份:1996
- 资助金额:
$ 4.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Elliptic and Parabolic Problems from Physical Models
数学科学:物理模型中的椭圆和抛物线问题
- 批准号:
9623438 - 财政年份:1996
- 资助金额:
$ 4.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Absolute Continuity of Parabolic Measure and Regularity of PDE's
数学科学:抛物线测度的绝对连续性和偏微分方程的正则性
- 批准号:
9531642 - 财政年份:1996
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Singular Integrals and Parabolic Partial Differential Equations
数学科学:奇异积分和抛物型偏微分方程
- 批准号:
9596112 - 财政年份:1995
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Construction and Analysis of Algorithms for Degenerate Variational and Parabolic Problems
数学科学:退化变分和抛物型问题算法的构建和分析
- 批准号:
9504492 - 财政年份:1995
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Singular Integrals and Parabolic Partial Differential Equations
数学科学:奇异积分和抛物型偏微分方程
- 批准号:
9400782 - 财政年份:1994
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamics in Almost Periodic Parabolic Equations and Coupled Map Lattices
数学科学:近周期抛物线方程和耦合映射格子的动力学
- 批准号:
9402945 - 财政年份:1994
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Structural Stability for Parabolic Equations
数学科学:抛物线方程的结构稳定性
- 批准号:
9400233 - 财政年份:1994
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Elliptic and Parabolic Problems from Physical Models in Several Space Dimensions
数学科学:多个空间维度中物理模型的非线性椭圆和抛物线问题
- 批准号:
9310258 - 财政年份:1993
- 资助金额:
$ 4.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Parabolic Invariant Theory and Geometric Analysis
数学科学:抛物线不变理论和几何分析
- 批准号:
9303497 - 财政年份:1993
- 资助金额:
$ 4.13万 - 项目类别:
Standard Grant