Minimal Smoothness Questions for Inverse Problems and Boundary Value Problems
反问题和边值问题的最小光滑度问题
基本信息
- 批准号:9801276
- 负责人:
- 金额:$ 7.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-05-15 至 2002-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Russell Brown will pursue research in two areas: inverse problems for partial differential equations and regularity for boundary value problems in nonsmooth domains. Many of the fundamental laws of nature are expressed as partial differential equations. In an inverse problem, one attempts to recover a coefficient in a partial differential equation from information about solutions of the equation. This provides a mathematical model for determining physical properties of an object (such as its conductivity) from measurements (such as voltage and current at the boundary). In the problem I will study, the inverse conductivity problem, we consider exactly the example described above: determine a spatially inhomogeneous conductivity from measurements of current and voltage made at the boundary. The innovation in my research is to attempt to determine the least restrictive hypotheses under which this determination can be made. The second area of investigation is related to boundary value problems for various partial differential equations in nonsmooth domains. In contrast to the inverse problem considered above, here we are considering the more straightforward problem of obtaining solutions to a partial differential equation given information at the boundary. This is a mathematical model for the problem of (for example) of finding the voltage potential in the interior from knowledge of the potential at the boundary. The innovation in my research is to establish minimal (and more realistic) hypotheses under which the solution can be shown to exist.
罗素·布朗将在两个领域进行研究: 偏微分方程与边值正则性 非光滑域中的问题。 自然界的许多基本定律都是以局部的形式来表达的 微分方程在逆问题中,人们试图恢复 信息的偏微分方程中的系数 关于方程的解这提供了一个数学模型 用于确定物体的物理性质(例如其 电导率)从测量(如电压和电流在 边界)。在我将要研究的问题中, 问题,我们考虑的正是上述的例子:确定一个 从电流测量的空间不均匀电导率, 在边界处产生的电压。我研究的创新之处在于 试图确定限制性最小的假设, 可以做出决定。 研究的第二个领域与边值问题有关 非光滑域上的各种偏微分方程。在 与上面考虑的逆问题相反,我们在这里 考虑到更直接的问题, 在边界处给出信息的偏微分方程。这是一个数学模型的问题(为 例如,从内部找到电压电势, 了解边界的潜力。在我的创新 研究是建立最小的(和更现实的)假设, 解决方案可以被证明是存在的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Brown其他文献
Metformin for the management of peri‐operative hyperglycaemia
二甲双胍治疗围手术期高血糖
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Russell Brown;J. Paul - 通讯作者:
J. Paul
The Reliability and Validity of the Task Analysis Recording Procedure (TARP)
任务分析记录程序 (TARP) 的可靠性和有效性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Russell Brown - 通讯作者:
Russell Brown
Creation, implementation, and evaluation of a FPA simulator ce program
- DOI:
10.1007/bf03023176 - 发表时间:
2005-06-01 - 期刊:
- 影响因子:3.300
- 作者:
Jordan Tarshis;Susan De Sousa;Russell Brown;Stuart Iglesias;Monica Kohlhammer - 通讯作者:
Monica Kohlhammer
Color and Sound: Synaesthesia at the Crossroads of Music and Science a Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
颜色与声音:音乐与科学十字路口的联觉向佛罗里达大学研究生院提交的论文,部分满足哲学博士学位的要求
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Matthew McCabe;My Teachers;Benjamin Broening;Elainie Lillios;Mikel Kuehn;James Paul Sain;Russell Robinson;Paul Richards;Jamie Reilly;Lise Abrams;Linda Hermer;Amy Corning;Rick Dietrich;Cain Norris;Ben Baldwin;Berkeley;G. Hoflund;Russell Brown;Heather Mcreynolds;Stefanie Acevedo;Joo Won Park;Mike Solomon;Kyle Vegter - 通讯作者:
Kyle Vegter
In reply: Regarding the survey on perioperative diabetes medications and glucose control
回复:关于围手术期糖尿病用药及血糖控制情况调查
- DOI:
10.1007/s12630-019-01425-5 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Russell Brown;U. Siddiqui;J. Paul - 通讯作者:
J. Paul
Russell Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Brown', 18)}}的其他基金
Graduate Scholars in Mathematics at the University of Kentucky
肯塔基大学数学研究生学者
- 批准号:
1356253 - 财政年份:2014
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
Some Questions in Inverse Problems and the Mixed Problem for Laplace's Equation in Lipschitz Domains
Lipschitz域拉普拉斯方程反问题和混合问题中的几个问题
- 批准号:
0099921 - 财政年份:2001
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations Under Minimal Smoothness Conditions
数学科学:最小光滑条件下的偏微分方程
- 批准号:
9305753 - 财政年份:1993
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Parabolic Partial Differential Equations in Nonsmooth Domains.
数学科学:非光滑域中的抛物型偏微分方程。
- 批准号:
9103046 - 财政年份:1991
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
Workshop to Determine Research Needs for Masonry; Clemson, South Carolina; Spring 1988.
确定砌体研究需求的研讨会;
- 批准号:
8811374 - 财政年份:1988
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705952 - 财政年份:1987
- 资助金额:
$ 7.85万 - 项目类别:
Fellowship Award
Properties of Grouted Hollow Brick Masonry
灌浆空心砖砌体的性能
- 批准号:
8517020 - 财政年份:1985
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
Static and Cyclic Behavior of Masonry Retrofit Embedments (Earthquake Engineering)
砌体改造埋件的静态和循环行为(地震工程)
- 批准号:
8217638 - 财政年份:1983
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Specialized Engineering Research Equipment: Installation And Calibration of Structural Testing Equipment
专业工程研究设备:结构检测设备安装与校准
- 批准号:
7925821 - 财政年份:1980
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
Cyclic Response of Masonry Anchor Bolts
砌体锚栓的循环响应
- 批准号:
7806095 - 财政年份:1979
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
相似海外基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of machining model for ultra-smoothness of hard and brittle base materials by superfinishing
硬脆基材超光滑超精加工模型构建
- 批准号:
23K03612 - 财政年份:2023
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relative smoothness and regularity in machine learning
机器学习中的相对平滑性和规律性
- 批准号:
570637-2021 - 财政年份:2021
- 资助金额:
$ 7.85万 - 项目类别:
University Undergraduate Student Research Awards
Simultaneous Estimation of Noise Level and Solution Smoothness for Ill-Posed Problems
同时估计不适定问题的噪声水平和解决方案平滑度
- 批准号:
416552794 - 财政年份:2019
- 资助金额:
$ 7.85万 - 项目类别:
Research Grants
Adaptive estimation of mixed discrete-continuous distributions under smoothness and sparsity
平滑和稀疏下混合离散连续分布的自适应估计
- 批准号:
1851796 - 财政年份:2019
- 资助金额:
$ 7.85万 - 项目类别:
Standard Grant
wild behavior of partially hyperbolic dynamics and its smoothness
部分双曲动力学的狂野行为及其平滑度
- 批准号:
18K03276 - 财政年份:2018
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularities and Smoothness in Geometric Partial Differential Equations
几何偏微分方程中的奇异性和光滑性
- 批准号:
1809011 - 财政年份:2018
- 资助金额:
$ 7.85万 - 项目类别:
Continuing Grant
"New Smoothness Spaces on Domains and Their Discrete Characterization"
“域上的新平滑空间及其离散特征”
- 批准号:
373295677 - 财政年份:2017
- 资助金额:
$ 7.85万 - 项目类别:
Research Grants
Accelerating Seismic Modelling and Inversion by Exploiting Wavefield Smoothness
利用波场平滑度加速地震建模和反演
- 批准号:
2232103 - 财政年份:2017
- 资助金额:
$ 7.85万 - 项目类别:
Studentship
Mechanism of "smoothness" of motion of patients with hip disease by entropy
熵论髋关节疾病患者运动“顺畅”机制
- 批准号:
17K01549 - 财政年份:2017
- 资助金额:
$ 7.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)