Lattices, Trees and Group Actions
格子、树和群动作
基本信息
- 批准号:0100149
- 负责人:
- 金额:$ 10.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2002-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator has determined the necessary and sufficient conditions that ensure the existence of tree lattices, that is discrete subgroup of finite covolume in the automorphism group of a locally finite tree, giving a complete answer to the Bass-Lubotzky conjectures for the existence of tree lattices. The intention is to explore the connections between tree lattices and lattices in rank 1 Lie groups over non-archimedean fields. The investigator is interested in making explicit constructions of non-uniform lattices contained within rank 1 Lie groups, comparing them with general tree lattices, covolumes, questions of arithmeticity and commensurability, and Hausdorff dimension. Concerning lattices in Lie groups, A. Lubotzky showed that rank 1 Lie groups over non-archimedean local fields contain uncountably many conjugacy classes of lattices. The investigator has obtainted a topological description of Lubotzky's deformation spaces of lattices. The aim now is to investigate the analytic and algebro-geometric structure of these deformation spaces, and to construct infinite dimensional deformation spaces for non-uniform lattices. The investigator and H. Garland have established that Kac-Moody groups over finite fields contain lattices. The aim is now to show that in rank 2 there are deformation spaces of lattices and to investigate the structure of the deformation spaces, of fundamental domains for non-uniform lattices, and of commensurability groups of uniform lattices in rank 2. Under consideration also is the existence of uniform lattices and spherical buildings in higher rank, congruence subgroups, and lattices in non-split and generalized Kac-Moody groups. The investigator and her colleagues aim, following the work of E. Rips, to give classification theorems for groups with free or stable actions on R-trees by isometries, and by isometries and homothety. The strategy is to give a classification of the pseudogroups of isometries of R, and then to combine this with a structure theory for reconstructing group actions which has recently been developed.We are studying infinite 'trees', which are connected graphs with no closed circuits, and the algebraic structure of their symmetries. The algebraic structures that are 'discrete' and have 'finite volume' are of particular importance. We have established the existence of such symmetries, and we are investigating their properties. This allows us to study the interactions of mathematics with physics. Our techniques also have applications in algebra, geometry and topology.
给出了保证树格存在的充分必要条件,即局部有限树的自同构群中有限协体积的离散子群,完整地回答了关于树格存在的Bass-Lubotzky猜想。目的是探索非阿基米德域上秩1李群中树格和格之间的联系。研究者感兴趣的是在1阶李群中明确构造非均匀格,并将它们与一般树格、协体积、算术性和可通约性问题以及豪斯多夫维数进行比较。关于李群中的格,A. Lubotzky证明了非阿基米德局部域上的1阶李群包含无数个格的共轭类。研究者已经获得了Lubotzky的晶格变形空间的拓扑描述。现在的目的是研究这些变形空间的解析结构和代数几何结构,并构造非均匀格的无限维变形空间。研究者和H. Garland建立了有限域上的Kac-Moody群包含格。现在的目的是证明在秩2中存在格的变形空间,并研究变形空间的结构,非均匀格的基本域,以及秩2中均匀格的可通约性群。讨论了高阶一致格和球形建筑的存在性、同余子群的存在性以及非分裂和广义Kac-Moody群中的格的存在性。研究者和她的同事们的目标是,继E. Rips的工作之后,通过等距、等距和同质给出r树上具有自由或稳定作用的群的分类定理。策略是给出R等距伪群的分类,然后将其与最近发展的重构群作用的结构理论相结合。我们正在研究无限“树”,它们是没有闭合回路的连接图,以及它们对称性的代数结构。“离散”和“有限体积”的代数结构特别重要。我们已经确定了这种对称性的存在,我们正在研究它们的性质。这使我们能够研究数学与物理的相互作用。我们的技术在代数、几何和拓扑学中也有应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Carbone其他文献
Equivariant Simplicial Reconstruction
等变单纯形重构
- DOI:
10.1137/20m1327483 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Vidit Nanda;Yusra Naqvi - 通讯作者:
Yusra Naqvi
The geometry of rank 2 hyperbolic root systems
2 阶双曲根系的几何形状
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Scott H. Murray;Sowmya Srinivasan - 通讯作者:
Sowmya Srinivasan
Fundamental domains for congruence subgroups of SL 2 in positive characteristic !
SL 2 正特征同余子群的基本域!
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Leigh Cobbs;S. H. Murray - 通讯作者:
S. H. Murray
Generators and relations for Lie superalgebras of Cartan type
嘉当型李超代数的生成元和关系式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;M. Cederwall;Jakob Palmkvist - 通讯作者:
Jakob Palmkvist
Growth of root multiplicities along imaginary root strings in Kac--Moody algebras
Kac中根重数沿虚根弦的增长--穆迪代数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Terence Coelho;S. H. Murray;Forrest Thurman;Songhao Zhu - 通讯作者:
Songhao Zhu
Lisa Carbone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa Carbone', 18)}}的其他基金
Hyperbolic Kac-Moody Group Symmetry and Applications
双曲 Kac-Moody 群对称性及其应用
- 批准号:
1101282 - 财政年份:2011
- 资助金额:
$ 10.53万 - 项目类别:
Standard Grant
相似海外基金
Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
- 批准号:
2343739 - 财政年份:2023
- 资助金额:
$ 10.53万 - 项目类别:
Standard Grant
Extending Group Actions on Trees
扩展树上的组动作
- 批准号:
575908-2022 - 财政年份:2022
- 资助金额:
$ 10.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
- 批准号:
2005297 - 财政年份:2020
- 资助金额:
$ 10.53万 - 项目类别:
Standard Grant
Trees, cubical complexes, and generalisations of coarse negative curvature in group theory
群论中的树、立方复形和粗负曲率的推广
- 批准号:
2123260 - 财政年份:2018
- 资助金额:
$ 10.53万 - 项目类别:
Studentship
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
1011857 - 财政年份:2010
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
0705960 - 财政年份:2007
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
0204185 - 财政年份:2002
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




