Graphs, Trees and Geometric Group Theory
图、树和几何群论
基本信息
- 批准号:1011857
- 负责人:
- 金额:$ 27.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies automorphism groups and deformation spaces of related metric objects. The motivating examples include the group GL(n,Z) acting on the deformation space of flat n-tori and the group Out(Fn) acting on the deformation space of compact metric graphs with fundamental group Fn. The project has four main components, which take off from these basic examples in various directions. The first component, joint with Martin Bridson, studies rigidity properties of Out(Fn) which limit the possibilities for maps between Out(Fn) and Out(Fm) and constrain the possible actions of Out(Fn) on spheres, contractible manifolds and CAT(0) spaces. The second component, joint with Ruth Charney, targets automorphism groups of right-angled Artin groups. In recent work Charney and the PI have shown that many properties shared by Out(Fn) and GL(n,Z) are in fact shared by the outer automorphism groups of all right-angled Artin groups. The tools used have been largely algebraic, but this project will develop new geometric tools using CAT(0) geometry. The third component, joint with John Smillie, considers deformation spaces of flat surfaces of arbitrary genus. The proposal is to define a bordification of the space of marked translation surfaces with a fixed number of singular points which descends to a compactification of the moduli space of such translation surfaces. This is motivated by analogous bordifications of spaces for SL(n, Z) and Out(Fn) and combines ideas from both, and should be useful in studying cohomological properties of these groups. The fourth part of the project, joint with Jim Conant and Martin Kassabov, returns to Out(Fn) and investigates the rational cohomology of Out(Fn) via the connection found by Kontsevich between this cohomology and the cohomology of a certain Lie algebra associated to the Lie operad.A powerful tool in mathematics is to encode the structure of a geometric object in an algebraic form. One can then use algebraic ideas to study the geometric object, or geometric ideas to study the algebraic object. This proposal uses a bootstrap of this idea to the next level: one can relate the group of {\it transformations}, or {\it automorphisms} of an algebraic object to the space of {\it deformations} of an associated geometric object. The underlying algebraic objects are quite simple: they are free groups, free abelian groups and right-angled Artin groups, but their automorphism groups are remarkably complex and still poorly understood. Similarly, the associated algebraic objects (trees, Euclidean spaces and CAT(0) spaces) are uncomplicated but their deformation spaces exhibit complex behavior, which has implications in many areas of pure and applied mathematics. The project will employ topological and geometric tools to understand these deformation spaces and translate the information obtained into new information about automorphism groups.
本项目研究相关度量对象的自同构群和形变空间。激发的例子包括群GL(n,Z)作用在平坦n-环面的变形空间上和群Out(Fn)作用在具有基本群Fn的紧度量图的变形空间上。该项目有四个主要组成部分,它们从这些基本示例出发,向各个方向发展。第一部分与Martin Bridson合作,研究Out(Fn)的刚性性质,这些性质限制了Out(Fn)和Out(Fm)之间映射的可能性,并限制了Out(Fn)在球面、可收缩流形和CAT(0)空间上的可能作用。第二个组件与Ruth Charney联合,针对直角Artin群的自同构群。在最近的工作中,Charney和PI证明了Out(Fn)和GL(n,Z)的许多共同性质实际上是所有直角Artin群的外自同构群所共有的。所使用的工具主要是代数的,但本项目将使用CAT(0)几何开发新的几何工具。 第三个组成部分,与约翰Smillie联合,考虑任意亏格的平坦曲面的变形空间。该建议是定义一个bordification的空间标记的翻译表面与一个固定数量的奇点下降到一个紧化的模空间的这种翻译表面。这是由SL(n,Z)和Out(Fn)的空间的类似边界化所激发的,并结合了两者的思想,并且应该在研究这些群的上同调性质时有用。 该项目的第四部分,与吉姆·科南特和马丁·卡萨博夫联合, 回到Out(Fn),通过Kontsevich发现的Out(Fn)的有理上同调和与李运算相关的李代数的上同调之间的联系,研究Out(Fn)的有理上同调。 然后,人们可以用代数思想来研究几何对象,或者用几何思想来研究代数对象。 这个提议将这个想法引导到下一个层次:人们可以将代数对象的{\it transformations}或{\it automorphisms}的群与相关几何对象的{\it deformations}的空间联系起来。 基本的代数对象非常简单:它们是自由群、自由阿贝尔群和直角阿廷群,但它们的自同构群非常复杂,仍然知之甚少。 类似地,相关的代数对象(树、欧几里得空间和CAT(0)空间)并不复杂,但它们的变形空间表现出复杂的行为,这在许多纯数学和应用数学领域都有意义。 该项目将雇用 拓扑和几何工具来理解这些变形空间,并将获得的信息转化为关于自同构群的新信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Vogtmann其他文献
The Euler characteristic of the moduli space of graphs
图的模空间的欧拉特征
- DOI:
10.1016/j.aim.2023.109290 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:1.500
- 作者:
Michael Borinsky;Karen Vogtmann - 通讯作者:
Karen Vogtmann
Infinitesimal operations on complexes of graphs
- DOI:
10.1007/s00208-003-0465-2 - 发表时间:
2003-08-13 - 期刊:
- 影响因子:1.400
- 作者:
Jim Conant;Karen Vogtmann - 通讯作者:
Karen Vogtmann
Karen Vogtmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Vogtmann', 18)}}的其他基金
What Next? The Mathematical Legacy of Bill Thurston, June 23 - 27, 2014
接下来是什么?
- 批准号:
1406302 - 财政年份:2014
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
Conference on Approaches to Group Theory
群论方法会议
- 批准号:
1039400 - 财政年份:2010
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
0705960 - 财政年份:2007
- 资助金额:
$ 27.49万 - 项目类别:
Continuing Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
0204185 - 财政年份:2002
- 资助金额:
$ 27.49万 - 项目类别:
Continuing Grant
Mathematical Sciences: Automorphisms of Free Groups
数学科学:自由群的自同构
- 批准号:
8805373 - 财政年份:1988
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometries for Groups
数学科学:群几何
- 批准号:
8514548 - 财政年份:1985
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
Cohomology of Linear Groups Over Rings of Imaginary Quadratic Integers (Mathematics)
虚数二次整数环上线性群的上同调(数学)
- 批准号:
8310340 - 财政年份:1984
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometries For Some Linear Groups; Applications to Algebraic K-Theory, Automorphic Forms, Hyperbolic Geometry, and Singularities
数学科学:某些线性群的几何;
- 批准号:
8300873 - 财政年份:1983
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
相似海外基金
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
- 批准号:
DE240100338 - 财政年份:2024
- 资助金额:
$ 27.49万 - 项目类别:
Discovery Early Career Researcher Award
Excellence in Research: Developing a Model System for Studying the Determinants of Flower Morphology in Tropical Dioecious Trees
卓越的研究:开发用于研究热带雌雄异株树木花形态决定因素的模型系统
- 批准号:
2401525 - 财政年份:2024
- 资助金额:
$ 27.49万 - 项目类别:
Standard Grant
Utilising novel Pongamia trees to decarbonise Australia’s beef value-chain
利用新型水黄皮树实现澳大利亚牛肉价值链脱碳
- 批准号:
LP220100090 - 财政年份:2024
- 资助金额:
$ 27.49万 - 项目类别:
Linkage Projects
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 27.49万 - 项目类别:
Collaborative R&D
Development of physiological index on the stress tolerance and the analytical method of distribution of riparian trees
河岸树木抗逆生理指标的建立及分布分析方法
- 批准号:
23K04040 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase II: Using a novel RNA therapy to immunize trees and vines against deadly bacteria
SBIR II 期:使用新型 RNA 疗法使树木和藤蔓免受致命细菌的侵害
- 批准号:
2223139 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Cooperative Agreement
Genetic variation in the phenology of root growth and freezing tolerance of subarctic evergreen trees
亚北极常绿树木根系生长物候和耐冻性的遗传变异
- 批准号:
23K13983 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NSFDEB-NERC: Gigante: Quantifying and upscaling the causes and drivers of death for giant tropical trees
NSFDEB-NERC:Gigante:量化和升级巨型热带树木死亡的原因和驱动因素
- 批准号:
NE/Y003942/1 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Research Grant
Detecting snow under and within trees with satellite lidar for improved climate and weather modelling
使用卫星激光雷达检测树下和树内的积雪,以改进气候和天气建模
- 批准号:
2890089 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Studentship
Assessing the principal ecological strategies of trees in African woodlands and their implications for ecosystem dynamics and functionality
评估非洲林地树木的主要生态策略及其对生态系统动态和功能的影响
- 批准号:
2894591 - 财政年份:2023
- 资助金额:
$ 27.49万 - 项目类别:
Studentship