Lattices, Trees and Group Actions
格子、树和群动作
基本信息
- 批准号:0701176
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this program is to advance understanding in algebra, group theory, representation theory and combinatorics, with particular emphasis on the mathematics underlying physics and geometry. Almost all finite dimensional semisimple Lie groups and Lie algebras occur in space-time symmetries and the development of the Standard Model of particle physics, which could not have progressed without an understanding of symmetries and group transformations. Infinite dimensional generalizations, known as Kac-Moody algebras and their associated groups, naturally form two distinct classes, namely affine and hyperbolic. By the 1980's the class of affine Kac-Moody algebras was shown to have wide applications in physical theories such as elementary particle theory, quantum field theory, gauge theory, conformal field theory, gravity and string theory. Recently many properties of hyperbolic Kac-Moody groups and algebras have been discovered in high-energy physics, though the full mathematical structure of these objects and certain aspects of the physical settings are not well understood. Moreover, mathematical proofs of the correspondences with physical theories are lacking or incomplete, and fundamental questions about the structure of hyperbolic algebras and groups remain open. This in part serves as motivation for our current and proposed work. Fundamental questions about the structure of hyperbolic Kac-Moody groups and algebras remain unanswered. The proposal addresses these questions directly using all available mathematical techniques. Our work also involves a number of mathematical questions about hyperbolic Kac-Moody groups and algebras that are motivated by the discovery of Kac-Moody symmetry in M-theory, supergravity and dimensional reduction, solutions of multidimensional gravity and cosmological billiards. The research proposed is in line with the following long term goals: to draw parallels between Kac-Moody groups, automorphism groups of discrete and continuous buildings, Lie theory, representation theory and automorphic forms, to find a classical interpretation of hyperbolic Kac-Moody groups, to use the geometry of Lorentz space and the methods of C*-algebras and noncommutative geometry to study Kac-Moody groups, to build a mathematical framework for studying recent discoveries of Kac-Moody symmetries in physics. Our recent work and proposal incorporates a range of mathematical techniques including group theory, algebra, representation theory, analysis, geometry, arithmetic and combinatorial methods, as well as the interactions between these subjects. The objective of this program is to advance understanding in algebra, group theory, representation theory and combinatorics, with particular emphasis on the mathematics underlying physics and geometry. We are studying infinite dimensional generalizations of the finite dimensional symmetries, known as Lie groups and Lie algebras, which occur in space-time symmetries and the development of the Standard Model of particle physics, and are widespread in their roles in diverse areas of mathematics. Infinite dimensional generalizations, known as Kac-Moody structures, naturally form two distinct classes, namely affine and hyperbolic. By the 1980's affine Kac-Moody symmetries were shown to have wide applications in physical theories such as elementary particle theory, quantum field theory, gauge theory, conformal field theory, gravity and string theory. Recently many properties of hyperbolic Kac-Moody symmetries have been discovered in high-energy physics, though the full mathematical structure of these objects and certain aspects of the physical settings are not well understood. Moreover, mathematical proofs of the correspondences with physical theories are lacking or incomplete, and fundamental questions about the structure of hyperbolic Kac-Moody symmetry structures remain open. The proposal addresses these questions directly using all available mathematical techniques. Our work also involves a number of mathematical questions about hyperbolic Kac-Moody structures that are motivated by the discovery of Kac-Moody symmetry in M-theory, (the proposed unification of 5 string theories), supergravity and dimensional reduction, solutions of multidimensional gravity and cosmological billiards. Our objective is to strengthen the mathematical framework for studying these physical applications, and to identify and explore problems in algebra and geometry that are of relevance to the development of high-energy contemporary physics.
该计划的目标是促进对代数,群论,表示论和组合学的理解,特别强调物理和几何基础的数学。几乎所有的有限维半单李群和李代数都出现在时空对称性和粒子物理学标准模型的发展中,如果没有对对称性和群变换的理解,标准模型就不可能取得进展。无限维的推广,被称为卡茨-穆迪代数及其相关的群体,自然形成两个不同的类,即仿射和双曲。到了1980年代,仿射Kac-Moody代数类在物理理论中有广泛的应用,如基本粒子理论、量子场论、规范理论、共形场论、引力和弦理论。最近,在高能物理中发现了双曲Kac-Moody群和代数的许多性质,尽管这些对象的完整数学结构和物理环境的某些方面还没有很好地理解。此外,与物理理论的对应关系的数学证明缺乏或不完整,关于双曲代数和群的结构的基本问题仍然是开放的。这在一定程度上是我们目前和拟议工作的动力。关于双曲Kac-Moody群和代数的结构的基本问题仍然没有答案。该提案直接使用所有可用的数学技术来解决这些问题。我们的工作还涉及一些数学问题的双曲Kac-穆迪群和代数的动机是发现Kac-穆迪对称性的M-理论,超引力和降维,多维引力和宇宙学台球的解决方案。拟议的研究符合以下长期目标:绘制Kac-Moody群,离散和连续建筑物的自同构群,Lie理论,表示论和自守形式之间的相似之处,找到双曲Kac-Moody群的经典解释,使用Lorentz空间的几何和C*-代数和非交换几何的方法来研究Kac-Moody群,建立一个数学框架来研究物理学中最近发现的卡茨-穆迪对称性。我们最近的工作和建议结合了一系列的数学技术,包括群论,代数,表示论,分析,几何,算术和组合方法,以及这些学科之间的相互作用。该计划的目标是促进对代数,群论,表示论和组合学的理解,特别强调物理和几何基础的数学。我们正在研究有限维对称的无限维推广,称为李群和李代数,它们发生在时空对称和粒子物理标准模型的发展中,并且在数学的各个领域中广泛发挥作用。无限维推广,称为卡茨-穆迪结构,自然形成两个不同的类,即仿射和双曲。到了1980年代,仿射Kac-Moody对称性在物理理论中有广泛的应用,例如基本粒子理论、量子场论、规范理论、共形场论、引力和弦理论。最近在高能物理中发现了双曲型卡茨-穆迪对称的许多性质,尽管这些物体的完整数学结构和物理环境的某些方面还没有很好地理解。此外,与物理理论对应的数学证明缺乏或不完整,关于双曲Kac-Moody对称结构的基本问题仍然悬而未决。该提案直接使用所有可用的数学技术来解决这些问题。我们的工作还涉及一些数学问题的双曲Kac-Moody结构的动机是发现Kac-Moody对称性的M理论,(建议统一的5弦理论),超引力和降维,多维引力和宇宙学台球的解决方案。我们的目标是加强研究这些物理应用的数学框架,并确定和探索与高能当代物理学发展相关的代数和几何问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Carbone其他文献
Equivariant Simplicial Reconstruction
等变单纯形重构
- DOI:
10.1137/20m1327483 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Vidit Nanda;Yusra Naqvi - 通讯作者:
Yusra Naqvi
The geometry of rank 2 hyperbolic root systems
2 阶双曲根系的几何形状
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Scott H. Murray;Sowmya Srinivasan - 通讯作者:
Sowmya Srinivasan
Fundamental domains for congruence subgroups of SL 2 in positive characteristic !
SL 2 正特征同余子群的基本域!
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Leigh Cobbs;S. H. Murray - 通讯作者:
S. H. Murray
Generators and relations for Lie superalgebras of Cartan type
嘉当型李超代数的生成元和关系式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;M. Cederwall;Jakob Palmkvist - 通讯作者:
Jakob Palmkvist
Growth of root multiplicities along imaginary root strings in Kac--Moody algebras
Kac中根重数沿虚根弦的增长--穆迪代数
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lisa Carbone;Terence Coelho;S. H. Murray;Forrest Thurman;Songhao Zhu - 通讯作者:
Songhao Zhu
Lisa Carbone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lisa Carbone', 18)}}的其他基金
Hyperbolic Kac-Moody Group Symmetry and Applications
双曲 Kac-Moody 群对称性及其应用
- 批准号:
1101282 - 财政年份:2011
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
相似海外基金
Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
- 批准号:
2343739 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Extending Group Actions on Trees
扩展树上的组动作
- 批准号:
575908-2022 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
- 批准号:
2005297 - 财政年份:2020
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Trees, cubical complexes, and generalisations of coarse negative curvature in group theory
群论中的树、立方复形和粗负曲率的推广
- 批准号:
2123260 - 财政年份:2018
- 资助金额:
$ 29.93万 - 项目类别:
Studentship
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
1011857 - 财政年份:2010
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
0705960 - 财政年份:2007
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
Graphs, Trees and Geometric Group Theory
图、树和几何群论
- 批准号:
0204185 - 财政年份:2002
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant














{{item.name}}会员




